DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries

Abstract

The practical application of high-capacity lithium-rich cathode materials in lithium-ion batteries has been largely restricted by severe side reactions with electrolytes. Herein, we report a highly stable lithium-rich Li2RuO3 cathode by forming a passivating solid electrolyte interphase at the interface with a sulfide solid electrolyte such as Li6PS5Cl in all-solid-state lithium batteries (ASSLBs), which efficiently suppresses serious parasitic interfacial reactions and fast-increasing interfacial impedance normally observed in liquid electrolytes. The exceptionally high interfacial stability of the Li2RuO3/sulfide electrolyte interface contributes to a high reversible capacity of 257 mA h g–1 of Li2RuO3 at 0.05C rate, and unprecedented cycling stability with 90% capacity retention after 1000 cycles at 1C rate. Iin this work, comprehensive experimental characterizations and first-principles calculations disclose that electronically insulating interfacial reaction products forming at the interface between the Li2RuO3 cathode and Li6PS5Cl facilitate the formation of a stable and passivating interphase and block the continuous side reactions. Importantly, reversible oxygen redox activity of Li2RuO3 is well-maintained in this configuration of ASSLBs even after 600 cycles, thus the common voltage decay of the Li-rich material is also significantly reduced. These new discoveries demonstrate the critical role of interface design for achieving prolonged cycling stability of lithium-rich cathode materials.

Authors:
 [1];  [2];  [1]; ORCiD logo [3];  [1];  [1];  [4];  [1];  [1];  [1];  [5]; ORCiD logo [3];  [4]; ORCiD logo [1]; ORCiD logo [1]
  1. Xiamen Univ. (China)
  2. Xiamen Univ. (China); Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf (Switzerland)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  4. Guilin Electrical Equipment Scientific Research Institute Co., Ltd, Guilin (China)
  5. Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf (Switzerland)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; National Natural Science Foundation of China (NSFC); National Key Research and Development Program of China; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO)
OSTI Identifier:
1963045
Grant/Contract Number:  
AC02-05CH11231; 21875196; 21935009; 22021001; 2021YFB2401800; 2019H0003
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 15; Journal Issue: 8; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Wu, Yuqi, Zhou, Ke, Ren, Fucheng, Ha, Yang, Liang, Ziteng, Zheng, Xuefan, Wang, Zhenyu, Yang, Wu, Zhang, Maojie, Luo, Mingzeng, Battaglia, Corsin, Yang, Wanli, Zhu, Lingyun, Gong, Zhengliang, and Yang, Yong. Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries. United States: N. p., 2022. Web. doi:10.1039/d2ee01067d.
Wu, Yuqi, Zhou, Ke, Ren, Fucheng, Ha, Yang, Liang, Ziteng, Zheng, Xuefan, Wang, Zhenyu, Yang, Wu, Zhang, Maojie, Luo, Mingzeng, Battaglia, Corsin, Yang, Wanli, Zhu, Lingyun, Gong, Zhengliang, & Yang, Yong. Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries. United States. https://doi.org/10.1039/d2ee01067d
Wu, Yuqi, Zhou, Ke, Ren, Fucheng, Ha, Yang, Liang, Ziteng, Zheng, Xuefan, Wang, Zhenyu, Yang, Wu, Zhang, Maojie, Luo, Mingzeng, Battaglia, Corsin, Yang, Wanli, Zhu, Lingyun, Gong, Zhengliang, and Yang, Yong. Wed . "Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries". United States. https://doi.org/10.1039/d2ee01067d. https://www.osti.gov/servlets/purl/1963045.
@article{osti_1963045,
title = {Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries},
author = {Wu, Yuqi and Zhou, Ke and Ren, Fucheng and Ha, Yang and Liang, Ziteng and Zheng, Xuefan and Wang, Zhenyu and Yang, Wu and Zhang, Maojie and Luo, Mingzeng and Battaglia, Corsin and Yang, Wanli and Zhu, Lingyun and Gong, Zhengliang and Yang, Yong},
abstractNote = {The practical application of high-capacity lithium-rich cathode materials in lithium-ion batteries has been largely restricted by severe side reactions with electrolytes. Herein, we report a highly stable lithium-rich Li2RuO3 cathode by forming a passivating solid electrolyte interphase at the interface with a sulfide solid electrolyte such as Li6PS5Cl in all-solid-state lithium batteries (ASSLBs), which efficiently suppresses serious parasitic interfacial reactions and fast-increasing interfacial impedance normally observed in liquid electrolytes. The exceptionally high interfacial stability of the Li2RuO3/sulfide electrolyte interface contributes to a high reversible capacity of 257 mA h g–1 of Li2RuO3 at 0.05C rate, and unprecedented cycling stability with 90% capacity retention after 1000 cycles at 1C rate. Iin this work, comprehensive experimental characterizations and first-principles calculations disclose that electronically insulating interfacial reaction products forming at the interface between the Li2RuO3 cathode and Li6PS5Cl facilitate the formation of a stable and passivating interphase and block the continuous side reactions. Importantly, reversible oxygen redox activity of Li2RuO3 is well-maintained in this configuration of ASSLBs even after 600 cycles, thus the common voltage decay of the Li-rich material is also significantly reduced. These new discoveries demonstrate the critical role of interface design for achieving prolonged cycling stability of lithium-rich cathode materials.},
doi = {10.1039/d2ee01067d},
journal = {Energy & Environmental Science},
number = 8,
volume = 15,
place = {United States},
year = {Wed Jul 06 00:00:00 EDT 2022},
month = {Wed Jul 06 00:00:00 EDT 2022}
}

Works referenced in this record:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
journal, January 2014

  • Seino, Yoshikatsu; Ota, Tsuyoshi; Takada, Kazunori
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE41655K

A reversible oxygen redox reaction in bulk-type all-solid-state batteries
journal, June 2020


Influence of Ti 4+ on the Electrochemical Performance of Li-Rich Layered Oxides - High Power and Long Cycle Life of Li 2 Ru 1– x Ti x O 3 Cathodes
journal, March 2015

  • Kalathil, Abdul Kareem; Arunkumar, Paulraj; Kim, Da Hye
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 13
  • DOI: 10.1021/am507951x

Nanostructure Transformation as a Signature of Oxygen Redox in Li-Rich 3d and 4d Cathodes
journal, April 2021

  • Grenier, Antonin; Kamm, Gabrielle E.; Li, Yixuan
  • Journal of the American Chemical Society, Vol. 143, Issue 15
  • DOI: 10.1021/jacs.1c00497

Improving the Electrochemical Performance of Li 2 RuO 3 through Chemical Substitution: A Case Study of ( x )LiCoO 2 ‐(1‐ x )Li 2 RuO 3 Solid Solution ( x ≤0.4)
journal, December 2019

  • Neelakantaiah, Ramesha R.; Dasari, Bosu Babu; Ette, Pedda Masthanaiah
  • ChemElectroChem, Vol. 7, Issue 1
  • DOI: 10.1002/celc.201902059

Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials
journal, April 2018


Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability
journal, October 2020


Passivation of the Cathode–Electrolyte Interface for 5 V-Class All-Solid-State Batteries
journal, May 2020

  • Liu, Gaozhan; Lu, Yong; Wan, Hongli
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 25
  • DOI: 10.1021/acsami.0c03610

Oxygen Vacancy Diffusion and Condensation in Lithium‐Ion Battery Cathode Materials
journal, June 2019

  • Lee, Sanghan; Jin, Wooyoung; Kim, Su Hwan
  • Angewandte Chemie International Edition, Vol. 58, Issue 31
  • DOI: 10.1002/anie.201904469

Influence of Carbon Additives on the Decomposition Pathways in Cathodes of Lithium Thiophosphate-Based All-Solid-State Batteries
journal, July 2020


Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes
journal, September 2021


Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

Solid Electrolyte: the Key for High-Voltage Lithium Batteries
journal, October 2014

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201401408

Interface Stability of Argyrodite Li 6 PS 5 Cl toward LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , and LiMn 2 O 4 in Bulk All-Solid-State Batteries
journal, April 2017


LiPO2F2 electrolyte additive for high-performance Li-rich cathode material
journal, September 2021


Distinct Oxygen Redox Activities in Li2MO3 (M = Mn, Ru, Ir)
journal, September 2021


Understanding the Stability for Li-Rich Layered Oxide Li 2 RuO 3 Cathode
journal, February 2016

  • Li, Biao; Shao, Ruiwen; Yan, Huijun
  • Advanced Functional Materials, Vol. 26, Issue 9
  • DOI: 10.1002/adfm.201504836

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

The Working Principle of a Li 2 CO 3 /LiNbO 3 Coating on NCM for Thiophosphate-Based All-Solid-State Batteries
journal, March 2021


Electrochemo‐Mechanical Effects on Structural Integrity of Ni‐Rich Cathodes with Different Microstructures in All Solid‐State Batteries
journal, January 2021

  • Liu, Xiangsi; Zheng, Bizhu; Zhao, Jun
  • Advanced Energy Materials, Vol. 11, Issue 8
  • DOI: 10.1002/aenm.202003583

Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study
journal, February 2017


The effect of electrochemically inactive Ti substituted for Ru in Li2Ru1-Ti O3 on structure and electrochemical performance
journal, September 2021


Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes
journal, January 2020


Impact of Structural Transformation on Electrochemical Performances of Li-Rich Cathode Materials: The Case of Li 2 RuO 3
journal, May 2019

  • Zheng, Feng; Zheng, Shiyao; Zhang, Peng
  • The Journal of Physical Chemistry C, Vol. 123, Issue 22
  • DOI: 10.1021/acs.jpcc.9b02887

Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries
journal, October 2018


Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification
journal, September 2006

  • Ohta, N.; Takada, K.; Zhang, L.
  • Advanced Materials, Vol. 18, Issue 17, p. 2226-2229
  • DOI: 10.1002/adma.200502604

Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes
journal, December 2017


Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Editors' Choice—Practical Assessment of Anionic Redox in Li-Rich Layered Oxide Cathodes: A Mixed Blessing for High Energy Li-Ion Batteries
journal, January 2016

  • Assat, Gaurav; Delacourt, Charles; Corte, Daniel Alves Dalla
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0531614jes

Degradation Mechanisms at the Li 10 GeP 2 S 12 /LiCoO 2 Cathode Interface in an All-Solid-State Lithium-Ion Battery
journal, June 2018

  • Zhang, Wenbo; Richter, Felix H.; Culver, Sean P.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 26
  • DOI: 10.1021/acsami.8b05132

Cycling mechanism of Li2MnO3: Li–CO2 batteries and commonality on oxygen redox in cathode materials
journal, April 2021


First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
journal, January 2016

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • Journal of Materials Chemistry A, Vol. 4, Issue 9
  • DOI: 10.1039/C5TA08574H

Observation of Chemomechanical Failure and the Influence of Cutoff Potentials in All-Solid-State Li–S Batteries
journal, March 2019


Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries
journal, July 2016

  • Qiu, Bao; Zhang, Minghao; Wu, Lijun
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12108

High-performance Li 6 PS 5 Cl-based all-solid-state lithium-ion batteries
journal, January 2019

  • Wang, Shuo; Xu, Xiaofu; Zhang, Xue
  • Journal of Materials Chemistry A, Vol. 7, Issue 31
  • DOI: 10.1039/C9TA04289J

High-voltage positive electrode materials for lithium-ion batteries
journal, January 2017

  • Li, Wangda; Song, Bohang; Manthiram, Arumugam
  • Chemical Society Reviews, Vol. 46, Issue 10
  • DOI: 10.1039/C6CS00875E

Solvent-Engineered Design of Argyrodite Li 6 PS 5 X (X = Cl, Br, I) Solid Electrolytes with High Ionic Conductivity
journal, November 2018


Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes
journal, May 2021


Solid-State Chemistries Stable with High-Energy Cathodes for Lithium-Ion Batteries
journal, September 2019


Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfide‐Based All‐Solid‐State Batteries
journal, May 2021

  • Wang, Changhong; Hwang, Sooyeon; Jiang, Ming
  • Advanced Energy Materials, Vol. 11, Issue 24
  • DOI: 10.1002/aenm.202100210

Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries
journal, May 2017

  • Zhang, Wenbo; Weber, Dominik A.; Weigand, Harald
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 21
  • DOI: 10.1021/acsami.7b01137

High-Voltage Reactivity and Long-Term Stability of Cation-Disordered Rocksalt Cathodes
journal, February 2022


Ni‐Rich Layered Cathode Materials with Electrochemo‐Mechanically Compliant Microstructures for All‐Solid‐State Li Batteries
journal, December 2019

  • Jung, Sung Hoo; Kim, Un‐Hyuck; Kim, Jae‐Hyung
  • Advanced Energy Materials, Vol. 10, Issue 6
  • DOI: 10.1002/aenm.201903360

Investigations on the Fundamental Process of Cathode Electrolyte Interphase Formation and Evolution of High-Voltage Cathodes
journal, December 2019

  • Li, Qinghao; Wang, Yi; Wang, Xuelong
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 2
  • DOI: 10.1021/acsami.9b16727

Revealing Electronic Signatures of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-Ion Battery Material Designs
journal, September 2019


Stacking Faults Hinder Lithium Insertion in Li 2 RuO 3
journal, November 2020


Injection of oxygen vacancies in the bulk lattice of layered cathodes
journal, April 2019


Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries
journal, September 2019


Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
journal, April 2018


All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design
journal, January 2021

  • Wang, Changhong; Liang, Jianwen; Zhao, Yang
  • Energy & Environmental Science, Vol. 14, Issue 5
  • DOI: 10.1039/D1EE00551K

Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery
journal, February 2019

  • Miura, Akira; Rosero-Navarro, Nataly Carolina; Sakuda, Atsushi
  • Nature Reviews Chemistry, Vol. 3, Issue 3
  • DOI: 10.1038/s41570-019-0078-2

Elucidating anionic oxygen activity in lithium-rich layered oxides
journal, March 2018


Li2MoO4 coated Ni-rich cathode for all-solid-state batteries
journal, August 2018


Insight of a Phase Compatible Surface Coating for Long‐Durable Li‐Rich Layered Oxide Cathode
journal, July 2019


Observation of partial reduction of manganese in the lithium rich layered oxides, 0.4Li 2 MnO 3 –0.6LiNi 1/3 Co 1/3 Mn 1/3 O 2 , during the first charge
journal, January 2017

  • Shim, Hyung Cheoul; Kim, Donghan; Shin, Dongwook
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 2
  • DOI: 10.1039/C6CP07574F

Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques
journal, January 2020

  • Zuo, Wenhua; Luo, Mingzeng; Liu, Xiangsi
  • Energy & Environmental Science, Vol. 13, Issue 12
  • DOI: 10.1039/D0EE01694B

Tuning the Reversibility of Oxygen Redox in Lithium-Rich Layered Oxides
journal, March 2017


High Performance Li 2 Ru 1– y Mn y O 3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding
journal, March 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemistry of Materials, Vol. 25, Issue 7
  • DOI: 10.1021/cm400193m