DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy localization efficiency in 1,3,5-trinitro-2,4,6-triaminobenzene pore collapse mechanisms

Abstract

Atomistic and continuum scale modeling efforts have shown that the shock-induced collapse of porosity can occur via a wide range of mechanisms dependent on pore morphology, the shockwave pressure, and material properties. The mechanisms that occur under weaker shocks tend to be more efficient at localizing thermal energy but do not result in high, absolute temperatures or spatially large localizations compared to mechanisms found under strong shock conditions. However, the energetic material 1,3,5-trinitro-2,4,6-triaminobenzene (TATB) undergoes a wide range of collapse mechanisms that are not typical of similar materials, leaving the collapse mechanisms and the resultant energy localization from the collapse, i.e., hotspots, relatively uncharacterized. Therefore, we present the pore collapse simulations of cylindrical pores in TATB for a wide range of pore sizes and shock strengths that trigger viscoplastic collapses that occur almost entirely perpendicular to the shock direction for weak shocks and hydrodynamic-like collapses for strong shocks that do not break the strong hydrogen bonds of the TATB basal planes. The resulting hotspot temperature fields from these mechanisms follow trends that differ considerably from other energetic materials; hence, we compare them under normalized temperature values to assess the relative efficiency of each mechanism to localize energy. The local intra-molecularmore » strain energy of the hotspots is also assessed to better understand the physical mechanisms behind the phenomena that lead to a latent potential energy.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1957931
Alternate Identifier(s):
OSTI ID: 1909740
Report Number(s):
LA-UR-22-31052
Journal ID: ISSN 0021-8979; TRN: US2312659
Grant/Contract Number:  
89233218CNA000001; 20220705PRD1
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 133; Journal Issue: 3; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; hotspots; pore collapse; shock compression

Citation Formats

Hamilton, Brenden William, and Germann, Timothy Clark. Energy localization efficiency in 1,3,5-trinitro-2,4,6-triaminobenzene pore collapse mechanisms. United States: N. p., 2023. Web. doi:10.1063/5.0133983.
Hamilton, Brenden William, & Germann, Timothy Clark. Energy localization efficiency in 1,3,5-trinitro-2,4,6-triaminobenzene pore collapse mechanisms. United States. https://doi.org/10.1063/5.0133983
Hamilton, Brenden William, and Germann, Timothy Clark. Wed . "Energy localization efficiency in 1,3,5-trinitro-2,4,6-triaminobenzene pore collapse mechanisms". United States. https://doi.org/10.1063/5.0133983. https://www.osti.gov/servlets/purl/1957931.
@article{osti_1957931,
title = {Energy localization efficiency in 1,3,5-trinitro-2,4,6-triaminobenzene pore collapse mechanisms},
author = {Hamilton, Brenden William and Germann, Timothy Clark},
abstractNote = {Atomistic and continuum scale modeling efforts have shown that the shock-induced collapse of porosity can occur via a wide range of mechanisms dependent on pore morphology, the shockwave pressure, and material properties. The mechanisms that occur under weaker shocks tend to be more efficient at localizing thermal energy but do not result in high, absolute temperatures or spatially large localizations compared to mechanisms found under strong shock conditions. However, the energetic material 1,3,5-trinitro-2,4,6-triaminobenzene (TATB) undergoes a wide range of collapse mechanisms that are not typical of similar materials, leaving the collapse mechanisms and the resultant energy localization from the collapse, i.e., hotspots, relatively uncharacterized. Therefore, we present the pore collapse simulations of cylindrical pores in TATB for a wide range of pore sizes and shock strengths that trigger viscoplastic collapses that occur almost entirely perpendicular to the shock direction for weak shocks and hydrodynamic-like collapses for strong shocks that do not break the strong hydrogen bonds of the TATB basal planes. The resulting hotspot temperature fields from these mechanisms follow trends that differ considerably from other energetic materials; hence, we compare them under normalized temperature values to assess the relative efficiency of each mechanism to localize energy. The local intra-molecular strain energy of the hotspots is also assessed to better understand the physical mechanisms behind the phenomena that lead to a latent potential energy.},
doi = {10.1063/5.0133983},
journal = {Journal of Applied Physics},
number = 3,
volume = 133,
place = {United States},
year = {Wed Jan 18 00:00:00 EST 2023},
month = {Wed Jan 18 00:00:00 EST 2023}
}

Works referenced in this record:

Molecular Dynamics Simulations of the Collapse of a Cylindrical Pore in the Energetic Material α-RDX
journal, November 2015

  • Eason, Reilly M.; Sewell, Thomas D.
  • Journal of Dynamic Behavior of Materials, Vol. 1, Issue 4
  • DOI: 10.1007/s40870-015-0037-z

Atomistic Mechanism for Hot Spot Initiation
journal, December 2002


Continuum and molecular dynamics simulations of pore collapse in shocked β -tetramethylene tetranitramine ( β -HMX) single crystals
journal, January 2021

  • Duarte, Camilo A.; Li, Chunyu; Hamilton, Brenden W.
  • Journal of Applied Physics, Vol. 129, Issue 1
  • DOI: 10.1063/5.0025050

Sensitivity of the Shock Initiation Threshold of 1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) to Nuclear Quantum Effects
journal, August 2019

  • Hamilton, Brenden W.; Kroonblawd, Matthew P.; Islam, Md Mahbubul
  • The Journal of Physical Chemistry C, Vol. 123, Issue 36
  • DOI: 10.1021/acs.jpcc.9b05409

Multiscale modeling of shock wave localization in porous energetic material
journal, January 2018


Effect of initial damage variability on hot-spot nucleation in energetic materials
journal, July 2018

  • Duarte, Camilo A.; Grilli, Nicolò; Koslowski, Marisol
  • Journal of Applied Physics, Vol. 124, Issue 2
  • DOI: 10.1063/1.5030656

Shock Waves in High-Energy Materials: The Initial Chemical Events in Nitramine RDX
journal, August 2003


Fourier-like Thermal Relaxation of Nanoscale Explosive Hot Spots
journal, September 2021

  • Kroonblawd, Matthew P.; Hamilton, Brenden W.; Strachan, Alejandro
  • The Journal of Physical Chemistry C, Vol. 125, Issue 37
  • DOI: 10.1021/acs.jpcc.1c05599

Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal
journal, May 2015

  • Austin, Ryan A.; Barton, Nathan R.; Reaugh, John E.
  • Journal of Applied Physics, Vol. 117, Issue 18
  • DOI: 10.1063/1.4918538

Tandem Molecular Dynamics and Continuum Studies of Shock‐Induced Pore Collapse in TATB
journal, November 2019

  • Zhao, Puhan; Lee, Sangyup; Sewell, Tommy
  • Propellants, Explosives, Pyrotechnics, Vol. 45, Issue 2
  • DOI: 10.1002/prep.201900382

Mesoscopic simulations of shock-to-detonation transition in reactive liquid high explosive
journal, December 2011


Initiation of Detonation by the Interaction of Shocks with Density Discontinuities
journal, January 1965


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Dynamics of void collapse in shocked energetic materials: physics of void–void interactions
journal, March 2013


Dynamic absorption in optical pyrometry of hot spots in plastic-bonded triaminotrinitrobenzene
journal, May 2019

  • Bassett, Will P.; Johnson, Belinda P.; Dlott, Dana D.
  • Applied Physics Letters, Vol. 114, Issue 19
  • DOI: 10.1063/1.5092984

Theoretical determination of anisotropic thermal conductivity for crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)
journal, August 2013

  • Kroonblawd, Matthew P.; Sewell, Thomas D.
  • The Journal of Chemical Physics, Vol. 139, Issue 7
  • DOI: 10.1063/1.4816667

Sensitivity of pore collapse heating to the melting temperature and shear viscosity of HMX
journal, January 2021


A Hotspot’s Better Half: Non-Equilibrium Intra-Molecular Strain in Shock Physics
journal, March 2021

  • Hamilton, Brenden W.; Kroonblawd, Matthew P.; Li, Chunyu
  • The Journal of Physical Chemistry Letters, Vol. 12, Issue 11
  • DOI: 10.1021/acs.jpclett.1c00233

Preparation and Properties of An Insensitive Booster Explosive Based on LLM-105
journal, November 2012

  • Xu, Wenzheng; An, Chongwei; Wang, Jingyu
  • Propellants, Explosives, Pyrotechnics, Vol. 38, Issue 1
  • DOI: 10.1002/prep.201100099

Shock Loading of Granular Ni/Al Composites. Part 1: Mechanics of Loading
journal, November 2014

  • Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 45
  • DOI: 10.1021/jp507795w

High Explosive Ignition through Chemically Activated Nanoscale Shear Bands
journal, May 2020


Predicted Reaction Mechanisms, Product Speciation, Kinetics, and Detonation Properties of the Insensitive Explosive 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105)
journal, February 2021

  • Hamilton, Brenden W.; Steele, Brad A.; Sakano, Michael N.
  • The Journal of Physical Chemistry A, Vol. 125, Issue 8
  • DOI: 10.1021/acs.jpca.0c10946

A generalized crystal-cutting method for modeling arbitrarily oriented crystals in 3D periodic simulation cells with applications to crystal–crystal interfaces
journal, October 2016

  • Kroonblawd, Matthew P.; Mathew, Nithin; Jiang, Shan
  • Computer Physics Communications, Vol. 207
  • DOI: 10.1016/j.cpc.2016.07.007

High dynamic range emission measurements of shocked energetic materials: Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)
journal, June 2016

  • Bassett, Will P.; Dlott, Dana D.
  • Journal of Applied Physics, Vol. 119, Issue 22
  • DOI: 10.1063/1.4953353

Nitrogen-Rich Heterocycles as Reactivity Retardants in Shocked Insensitive Explosives
journal, April 2009

  • Manaa, M. Riad; Reed, Evan J.; Fried, Laurence E.
  • Journal of the American Chemical Society, Vol. 131, Issue 15
  • DOI: 10.1021/ja808196e

Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive
journal, August 2016


Modeling The Effects of Shock Pressure and Pore Morphology on Hot Spot Mechanisms in HMX
journal, June 2018

  • Springer, H. Keo; Bastea, Sorin; Nichols, Albert L.
  • Propellants, Explosives, Pyrotechnics, Vol. 43, Issue 8
  • DOI: 10.1002/prep.201800082

Role of dynamical compressive and shear loading on hotspot criticality in RDX via reactive molecular dynamics
journal, August 2020

  • Islam, Md Mahbubul; Strachan, Alejandro
  • Journal of Applied Physics, Vol. 128, Issue 6
  • DOI: 10.1063/5.0014461

A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

Three-dimensional simulations of void collapse in energetic materials
journal, March 2018


Void Collapse in Shocked ‐HMX Single Crystals: Simulations and Experiments
journal, January 2020

  • Duarte, Camilo A.; Hamed, Ahmed; Drake, Jonathan D.
  • Propellants, Explosives, Pyrotechnics, Vol. 45, Issue 2
  • DOI: 10.1002/prep.201900251

Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale
journal, September 2015

  • Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 38
  • DOI: 10.1021/acs.jpcc.5b05362

Chemistry Under Shock Conditions
journal, July 2021


Theoretical study of the defect evolution for molecular crystal under shock loading
journal, February 2019

  • Long, Yao; Chen, Jun
  • Journal of Applied Physics, Vol. 125, Issue 6
  • DOI: 10.1063/1.5067284

Irreversible Deformation Mechanisms for 1,3,5-Triamino-2,4,6-Trinitrobenzene Single Crystal through Molecular Dynamics Simulations
journal, May 2018

  • Lafourcade, Paul; Denoual, Christophe; Maillet, Jean-Bernard
  • The Journal of Physical Chemistry C, Vol. 122, Issue 26
  • DOI: 10.1021/acs.jpcc.8b02983

Systematic Builder for All‐Atom Simulations of Plastically Bonded Explosives
journal, June 2022

  • Li, Chunyu; Hamilton, Brenden W.; Shen, Tongtong
  • Propellants, Explosives, Pyrotechnics, Vol. 47, Issue 8
  • DOI: 10.1002/prep.202200003

Static and Dynamic Pore‐Collapse Relations for Ductile Porous Materials
journal, April 1972

  • Carroll, M. M.; Holt, A. C.
  • Journal of Applied Physics, Vol. 43, Issue 4
  • DOI: 10.1063/1.1661372

Role of Molecular Disorder on the Reactivity of RDX
journal, November 2018

  • Sakano, Michael; Hamilton, Brenden; Islam, Md Mahbubul
  • The Journal of Physical Chemistry C, Vol. 122, Issue 47
  • DOI: 10.1021/acs.jpcc.8b06509

Understanding the shock and detonation response of high explosives at the continuum and meso scales
journal, March 2018

  • Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.
  • Applied Physics Reviews, Vol. 5, Issue 1
  • DOI: 10.1063/1.5005997

Extemporaneous Mechanochemistry: Shock-Wave-Induced Ultrafast Chemical Reactions Due to Intramolecular Strain Energy
journal, July 2022

  • Hamilton, Brenden W.; Kroonblawd, Matthew P.; Strachan, Alejandro
  • The Journal of Physical Chemistry Letters, Vol. 13, Issue 29
  • DOI: 10.1021/acs.jpclett.2c01798

Observing Hot Spot Formation in Individual Explosive Crystals Under Shock Compression
journal, May 2020

  • Johnson, Belinda P.; Zhou, Xuan; Ihara, Hoya
  • The Journal of Physical Chemistry A, Vol. 124, Issue 23
  • DOI: 10.1021/acs.jpca.0c02788

Atomic-level view of inelastic deformation in a shock loaded molecular crystal
journal, August 2007


Effects of void size, density, and arrangement on deflagration and detonation sensitivity of a reactive empirical bond order high explosive
journal, December 2010

  • Herring, S. Davis; Germann, Timothy C.; Grønbech-Jensen, Niels
  • Physical Review B, Vol. 82, Issue 21
  • DOI: 10.1103/PhysRevB.82.214108

Shock-induced hotspot formation in amorphous and crystalline 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX): A molecular dynamics comparative study
journal, August 2021

  • Li, Chunyu; Sakano, Michael N.; Strachan, Alejandro
  • Journal of Applied Physics, Vol. 130, Issue 5
  • DOI: 10.1063/5.0055998

Anisotropy in surface-initiated melting of the triclinic molecular crystal 1,3,5-triamino-2,4,6-trinitrobenzene: A molecular dynamics study
journal, September 2015

  • Mathew, N.; Sewell, Thomas D.; Thompson, Donald L.
  • The Journal of Chemical Physics, Vol. 143, Issue 9
  • DOI: 10.1063/1.4929806

Developing Reaction Chemistry Models from Reactive Molecular Dynamics: TATB
journal, June 2022


The Potential Energy Hotspot: Effects of Impact Velocity, Defect Geometry, and Crystallographic Orientation
journal, February 2022

  • Hamilton, Brenden W.; Kroonblawd, Matthew P.; Strachan, Alejandro
  • The Journal of Physical Chemistry C, Vol. 126, Issue 7
  • DOI: 10.1021/acs.jpcc.1c10226

A molecular dynamics simulation study of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene as a function of pressure and temperature
journal, December 2009

  • Bedrov, Dmitry; Borodin, Oleg; Smith, Grant D.
  • The Journal of Chemical Physics, Vol. 131, Issue 22
  • DOI: 10.1063/1.3264972

Shock initiation of explosives: High temperature hot spots explained
journal, August 2017

  • Bassett, Will P.; Johnson, Belinda P.; Neelakantan, Nitin K.
  • Applied Physics Letters, Vol. 111, Issue 6
  • DOI: 10.1063/1.4985593

Dynamic fracture and hot-spot modeling in energetic composites
journal, February 2018

  • Grilli, Nicolò; Duarte, Camilo A.; Koslowski, Marisol
  • Journal of Applied Physics, Vol. 123, Issue 6
  • DOI: 10.1063/1.5009297

LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
journal, February 2022

  • Thompson, Aidan P.; Aktulga, H. Metin; Berger, Richard
  • Computer Physics Communications, Vol. 271
  • DOI: 10.1016/j.cpc.2021.108171

Highly scalable discrete-particle simulations with novel coarse-graining: accessing the microscale
journal, May 2018


Unsupervised Learning-Based Multiscale Model of Thermochemistry in 1,3,5-Trinitro-1,3,5-triazinane (RDX)
journal, October 2020

  • Sakano, Michael N.; Hamed, Ahmed; Kober, Edward M.
  • The Journal of Physical Chemistry A, Vol. 124, Issue 44
  • DOI: 10.1021/acs.jpca.0c07320

Critical Conditions for Impact- and Shock-Induced Hot Spots in Solid Explosives
journal, January 1996

  • Tarver, Craig M.; Chidester, Steven K.; Nichols, Albert L.
  • The Journal of Physical Chemistry, Vol. 100, Issue 14
  • DOI: 10.1021/jp953123s

Many-Body Mechanochemistry: Intra-molecular Strain in Condensed Matter Chemistry
journal, February 2022