DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of plasmon relaxation mechanisms using nonadiabatic molecular dynamics

Abstract

Hot carriers generated from the decay of plasmon excitation can be harvested to drive a wide range of physical or chemical processes. However, their generation efficiency is limited by the concomitant phonon-induced relaxation processes by which the energy in excited carriers is transformed into heat. However, simulations of dynamics of nanoscale clusters are challenging due to the computational complexity involved. Here, in this paper, we adopt our newly developed Trajectory Surface Hopping (TSH) nonadiabatic molecular dynamics algorithm to simulate plasmon relaxation in Au20 clusters, taking the atomistic details into account. The electronic properties are treated within the Linear Response Time-Dependent Tight-binding Density Functional Theory (LR-TDDFTB) framework. The relaxation of plasmon due to coupling to phonon modes in Au20 beyond the Born–Oppenheimer approximation is described by the TSH algorithm. The numerically efficient LR-TDDFTB method allows us to address a dense manifold of excited states to ensure the inclusion of plasmon excitation. Starting from the photoexcited plasmon states in Au20 cluster, we find that the time constant for relaxation from plasmon excited states to the lowest excited states is about 2.7 ps, mainly resulting from a stepwise decay process caused by low-frequency phonons of the Au20 cluster. Furthermore, our simulations show thatmore » the lifetime of the phonon-induced plasmon dephasing process is ~10.4 fs and that such a swift process can be attributed to the strong nonadiabatic effect in small clusters. Our simulations demonstrate a detailed description of the dynamic processes in nanoclusters, including plasmon excitation, hot carrier generation from plasmon excitation dephasing, and the subsequent phonon-induced relaxation process.« less

Authors:
ORCiD logo [1];  [1];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [3]
  1. Shenzhen JL Computational Science and Applied Research Institute (China)
  2. Shenzhen JL Computational Science and Applied Research Institute (China); Beijing Computational Science Research Center (China); Univ. of Bremen (Germany)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Univ. of Electronic Science and Technology of China (China); Hong Kong Quantum AI Lab Limited (China)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1922787
Report Number(s):
LA-UR-22-25284
Journal ID: ISSN 0021-9606; TRN: US2312775
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 157; Journal Issue: 21; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; inorganic and physical chemistry; materials science; nanoclusters; plasmons; non-adiabatic molecular dynamics; chemical processes; phonons; Born-Oppenheimer approximation; surface hopping; linear response

Citation Formats

Wu, Xiaoyan, Liu, Baopi, Frauenheim, Thomas, Tretiak, Sergei, Yam, ChiYung, and Zhang, Yu. Investigation of plasmon relaxation mechanisms using nonadiabatic molecular dynamics. United States: N. p., 2022. Web. doi:10.1063/5.0127435.
Wu, Xiaoyan, Liu, Baopi, Frauenheim, Thomas, Tretiak, Sergei, Yam, ChiYung, & Zhang, Yu. Investigation of plasmon relaxation mechanisms using nonadiabatic molecular dynamics. United States. https://doi.org/10.1063/5.0127435
Wu, Xiaoyan, Liu, Baopi, Frauenheim, Thomas, Tretiak, Sergei, Yam, ChiYung, and Zhang, Yu. Thu . "Investigation of plasmon relaxation mechanisms using nonadiabatic molecular dynamics". United States. https://doi.org/10.1063/5.0127435. https://www.osti.gov/servlets/purl/1922787.
@article{osti_1922787,
title = {Investigation of plasmon relaxation mechanisms using nonadiabatic molecular dynamics},
author = {Wu, Xiaoyan and Liu, Baopi and Frauenheim, Thomas and Tretiak, Sergei and Yam, ChiYung and Zhang, Yu},
abstractNote = {Hot carriers generated from the decay of plasmon excitation can be harvested to drive a wide range of physical or chemical processes. However, their generation efficiency is limited by the concomitant phonon-induced relaxation processes by which the energy in excited carriers is transformed into heat. However, simulations of dynamics of nanoscale clusters are challenging due to the computational complexity involved. Here, in this paper, we adopt our newly developed Trajectory Surface Hopping (TSH) nonadiabatic molecular dynamics algorithm to simulate plasmon relaxation in Au20 clusters, taking the atomistic details into account. The electronic properties are treated within the Linear Response Time-Dependent Tight-binding Density Functional Theory (LR-TDDFTB) framework. The relaxation of plasmon due to coupling to phonon modes in Au20 beyond the Born–Oppenheimer approximation is described by the TSH algorithm. The numerically efficient LR-TDDFTB method allows us to address a dense manifold of excited states to ensure the inclusion of plasmon excitation. Starting from the photoexcited plasmon states in Au20 cluster, we find that the time constant for relaxation from plasmon excited states to the lowest excited states is about 2.7 ps, mainly resulting from a stepwise decay process caused by low-frequency phonons of the Au20 cluster. Furthermore, our simulations show that the lifetime of the phonon-induced plasmon dephasing process is ~10.4 fs and that such a swift process can be attributed to the strong nonadiabatic effect in small clusters. Our simulations demonstrate a detailed description of the dynamic processes in nanoclusters, including plasmon excitation, hot carrier generation from plasmon excitation dephasing, and the subsequent phonon-induced relaxation process.},
doi = {10.1063/5.0127435},
journal = {Journal of Chemical Physics},
number = 21,
volume = 157,
place = {United States},
year = {Thu Dec 01 00:00:00 EST 2022},
month = {Thu Dec 01 00:00:00 EST 2022}
}

Works referenced in this record:

Fast Numerical Evaluation of Time-Derivative Nonadiabatic Couplings for Mixed Quantum–Classical Methods
journal, October 2015

  • Ryabinkin, Ilya G.; Nagesh, Jayashree; Izmaylov, Artur F.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 21
  • DOI: 10.1021/acs.jpclett.5b02062

The PYXAID Program for Non-Adiabatic Molecular Dynamics in Condensed Matter Systems
journal, October 2013

  • Akimov, Alexey V.; Prezhdo, Oleg V.
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 11
  • DOI: 10.1021/ct400641n

Direct probe of size-dependent electronic relaxation in single-sized Au and nearly monodisperse Pt colloidal nano-particles
journal, May 1997


On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory
journal, March 1998

  • Kambhampati, Patanjali; Child, C. M.; Foster, Michelle C.
  • The Journal of Chemical Physics, Vol. 108, Issue 12
  • DOI: 10.1063/1.475909

Determining Plasmonic Hot Electrons and Photothermal Effects during H 2 Evolution with TiN–Pt Nanohybrids
journal, March 2020


Interfacial States Cause Equal Decay of Plasmons and Hot Electrons at Gold–Metal Oxide Interfaces
journal, March 2020


SCC-DFTB parameters for simulating hybrid gold-thiolates compounds
journal, August 2015

  • Fihey, Arnaud; Hettich, Christian; Touzeau, Jérémy
  • Journal of Computational Chemistry, Vol. 36, Issue 27
  • DOI: 10.1002/jcc.24046

Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna
journal, February 2014

  • Chalabi, Hamidreza; Schoen, David; Brongersma, Mark L.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl4044373

First Principles Nonadiabatic Excited-State Molecular Dynamics in NWChem
journal, August 2020

  • Song, Huajing; Fischer, Sean A.; Zhang, Yu
  • Journal of Chemical Theory and Computation, Vol. 16, Issue 10
  • DOI: 10.1021/acs.jctc.0c00295

Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes
journal, April 2001

  • El-Sayed, Mostafa A.
  • Accounts of Chemical Research, Vol. 34, Issue 4
  • DOI: 10.1021/ar960016n

Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions
journal, July 2018


Static polarizabilities and optical absorption spectra of gold clusters ( Au n , n = 2 14 and 20) from first principles
journal, November 2007


Adiabatic time-dependent density functional methods for excited state properties
journal, October 2002

  • Furche, Filipp; Ahlrichs, Reinhart
  • The Journal of Chemical Physics, Vol. 117, Issue 16
  • DOI: 10.1063/1.1508368

Theory of Plasmonic Hot-Carrier Generation and Relaxation
journal, October 2021


Hydrogen Detected by the Naked Eye: Optical Hydrogen Gas Sensors Based on Core/Shell Plasmonic Nanorod Metamaterials
journal, March 2014

  • Nasir, Mazhar E.; Dickson, Wayne; Wurtz, Gregory A.
  • Advanced Materials, Vol. 26, Issue 21
  • DOI: 10.1002/adma.201305958

Surface Ligands Increase Photoexcitation Relaxation Rates in CdSe Quantum Dots
journal, June 2012

  • Kilina, Svetlana; Velizhanin, Kirill A.; Ivanov, Sergei
  • ACS Nano, Vol. 6, Issue 7
  • DOI: 10.1021/nn302371q

Perspective: Nonadiabatic dynamics theory
journal, December 2012

  • Tully, John C.
  • The Journal of Chemical Physics, Vol. 137, Issue 22
  • DOI: 10.1063/1.4757762

Optical characterization of single plasmonic nanoparticles
journal, January 2015

  • Olson, Jana; Dominguez-Medina, Sergio; Hoggard, Anneli
  • Chemical Society Reviews, Vol. 44, Issue 1
  • DOI: 10.1039/c4cs00131a

Femtochemistry at Metal Surfaces:  Nonadiabatic Reaction Dynamics
journal, October 2006

  • Frischkorn, Christian; Wolf, Martin
  • Chemical Reviews, Vol. 106, Issue 10
  • DOI: 10.1021/cr050161r

Relaxation of Plasmon-Induced Hot Carriers
journal, December 2017


Hot-Electron Dynamics and Thermalization in Small Metallic Nanoparticles
journal, July 2016


Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods
journal, October 1999

  • Link, Stephan; El-Sayed, Mostafa A.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 40
  • DOI: 10.1021/jp9917648

Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine
journal, December 2008

  • Jain, Prashant K.; Huang, Xiaohua; El-Sayed, Ivan H.
  • Accounts of Chemical Research, Vol. 41, Issue 12, p. 1578-1586
  • DOI: 10.1021/ar7002804

Observing the Multiexciton State in Singlet Fission and Ensuing Ultrafast Multielectron Transfer
journal, December 2011


Auger-Mediated Electron Relaxation Is Robust to Deep Hole Traps: Time-Domain Ab Initio Study of CdSe Quantum Dots
journal, February 2015

  • Trivedi, Dhara J.; Wang, Linjun; Prezhdo, Oleg V.
  • Nano Letters, Vol. 15, Issue 3
  • DOI: 10.1021/nl504982k

O PTICAL P ROPERTIES AND U LTRAFAST D YNAMICS OF M ETALLIC N ANOCRYSTALS
journal, October 2003


Hot Electrons Generated from Doped Quantum Dots via Upconversion of Excitons to Hot Charge Carriers for Enhanced Photocatalysis
journal, April 2015

  • Dong, Yitong; Choi, Julius; Jeong, Hae-Kwon
  • Journal of the American Chemical Society, Vol. 137, Issue 16
  • DOI: 10.1021/jacs.5b02026

Ab initio nanoplasmonics: The impact of atomic structure
journal, October 2014


Ab initio study of phonon-induced dephasing of plasmon excitations in silver quantum dots
journal, March 2010


Plasmon-induced hot carrier science and technology
journal, January 2015

  • Brongersma, Mark L.; Halas, Naomi J.; Nordlander, Peter
  • Nature Nanotechnology, Vol. 10, Issue 1
  • DOI: 10.1038/nnano.2014.311

Electromagnetic fields around silver nanoparticles and dimers
journal, January 2004

  • Hao, Encai; Schatz, George C.
  • The Journal of Chemical Physics, Vol. 120, Issue 1, p. 357-366
  • DOI: 10.1063/1.1629280

Single plasmon hot carrier generation in metallic nanoparticles
journal, May 2019

  • Román Castellanos, Lara; Hess, Ortwin; Lischner, Johannes
  • Communications Physics, Vol. 2, Issue 1
  • DOI: 10.1038/s42005-019-0148-2

Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells
journal, May 2016

  • Zhang, Yu; Yam, ChiYung; Schatz, George C.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 10
  • DOI: 10.1021/acs.jpclett.6b00879

Chemical Interface Damping of Surface Plasmon Resonances
journal, March 2021


Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms
journal, October 2017


Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure
journal, July 2020


Modeling Auger Processes with Nonadiabatic Molecular Dynamics
journal, December 2020


Analysis of State-Specific Vibrations Coupled to the Unidirectional Energy Transfer in Conjugated Dendrimers
journal, October 2012

  • Soler, Miguel A.; Roitberg, Adrian E.; Nelson, Tammie
  • The Journal of Physical Chemistry A, Vol. 116, Issue 40
  • DOI: 10.1021/jp301293e

Global Flux Surface Hopping Approach for Mixed Quantum-Classical Dynamics
journal, June 2014

  • Wang, Linjun; Trivedi, Dhara; Prezhdo, Oleg V.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 9
  • DOI: 10.1021/ct5003835

Constant temperature simulations using the Langevin equation with velocity Verlet integration
journal, September 1998


Implementation of surface hopping molecular dynamics using semiempirical methods
journal, June 2008


Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H 2 on Au
journal, December 2012

  • Mukherjee, Shaunak; Libisch, Florian; Large, Nicolas
  • Nano Letters, Vol. 13, Issue 1
  • DOI: 10.1021/nl303940z

Nonadiabatic molecular dynamics simulations based on time-dependent density functional tight-binding method
journal, August 2022

  • Wu, Xiaoyan; Wen, Shizheng; Song, Huajing
  • The Journal of Chemical Physics, Vol. 157, Issue 8
  • DOI: 10.1063/5.0100339

Ligands Slow Down Pure-Dephasing in Semiconductor Quantum Dots
journal, August 2015


Slow Relaxation of Surface Plasmon Excitations in Au55: The Key to Efficient Plasmonic Heating in Au/TiO2
journal, April 2016

  • Ranasingha, Oshadha; Wang, Hong; Zobač, Vladimír
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 8
  • DOI: 10.1021/acs.jpclett.6b00283

Mechanistic Insights into Photocatalyzed H 2 Dissociation on Au Clusters
journal, July 2020

  • Wu, Qisheng; Zhou, Linsen; Schatz, George C.
  • Journal of the American Chemical Society, Vol. 142, Issue 30
  • DOI: 10.1021/jacs.0c04491

DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
journal, March 2020

  • Hourahine, B.; Aradi, B.; Blum, V.
  • The Journal of Chemical Physics, Vol. 152, Issue 12
  • DOI: 10.1063/1.5143190

Three-Stage Evolution from Nonscalable to Scalable Optical Properties of Thiolate-Protected Gold Nanoclusters
journal, December 2019

  • Zhou, Meng; Higaki, Tatsuya; Li, Yingwei
  • Journal of the American Chemical Society, Vol. 141, Issue 50
  • DOI: 10.1021/jacs.9b09066

Plasmon-Mediated Electron Injection from Au Nanorods into MoS2: Traditional versus Photoexcitation Mechanism
journal, May 2018


An autonomous photosynthetic device in which all charge carriers derive from surface plasmons
journal, February 2013

  • Mubeen, Syed; Lee, Joun; Singh, Nirala
  • Nature Nanotechnology, Vol. 8, Issue 4
  • DOI: 10.1038/nnano.2013.18

Time-Domain Ab Initio Study of Phonon-Induced Relaxation of Plasmon Excitations in a Silver Quantum Dot
journal, July 2012

  • Neukirch, Amanda J.; Guo, Zhenyu; Prezhdo, Oleg V.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 28
  • DOI: 10.1021/jp303361y

Plasmons in Strongly Coupled Metallic Nanostructures
journal, June 2011

  • Halas, Naomi J.; Lal, Surbhi; Chang, Wei-Shun
  • Chemical Reviews, Vol. 111, Issue 6
  • DOI: 10.1021/cr200061k

Interplay between Intra- and Interband Transitions Associated with the Plasmon-Induced Hot Carrier Generation Process in Silver and Gold Nanoclusters
journal, December 2019

  • Berdakin, Matias; Douglas-Gallardo, Oscar A.; Sánchez, Cristián G.
  • The Journal of Physical Chemistry C, Vol. 124, Issue 2
  • DOI: 10.1021/acs.jpcc.9b10871

Direct Photocatalysis by Plasmonic Nanostructures
journal, December 2013

  • Kale, Matthew J.; Avanesian, Talin; Christopher, Phillip
  • ACS Catalysis, Vol. 4, Issue 1
  • DOI: 10.1021/cs400993w

Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry
journal, December 2015

  • Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha
  • ACS Nano, Vol. 10, Issue 1
  • DOI: 10.1021/acsnano.5b06199

Atomistic Insights into Chemical Interface Damping of Surface Plasmon Excitations in Silver Nanoclusters
journal, October 2016

  • Douglas-Gallardo, Oscar A.; Berdakin, Matías; Sánchez, Cristián G.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 42
  • DOI: 10.1021/acs.jpcc.6b08519

Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals
journal, July 2000

  • Link, Stephan; El-Sayed, Mostafa A.
  • International Reviews in Physical Chemistry, Vol. 19, Issue 3
  • DOI: 10.1080/01442350050034180

Molecular dynamics with electronic transitions
journal, July 1990

  • Tully, John C.
  • The Journal of Chemical Physics, Vol. 93, Issue 2
  • DOI: 10.1063/1.459170

Time-Dependent Extension of the Long-Range Corrected Density Functional Based Tight-Binding Method
journal, March 2017

  • Kranz, Julian J.; Elstner, Marcus; Aradi, Bálint
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 4
  • DOI: 10.1021/acs.jctc.6b01243

Heterometallic antenna−reactor complexes for photocatalysis
journal, July 2016

  • Swearer, Dayne F.; Zhao, Hangqi; Zhou, Linan
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 32
  • DOI: 10.1073/pnas.1609769113

NEXMD Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations
journal, July 2020

  • Malone, Walter; Nebgen, Benjamin; White, Alexander
  • Journal of Chemical Theory and Computation, Vol. 16, Issue 9
  • DOI: 10.1021/acs.jctc.0c00248

Approximate time-dependent density functional theory
journal, November 2009


Instantaneous Generation of Charge-Separated State on TiO 2 Surface Sensitized with Plasmonic Nanoparticles
journal, March 2014

  • Long, Run; Prezhdo, Oleg V.
  • Journal of the American Chemical Society, Vol. 136, Issue 11
  • DOI: 10.1021/ja5001592

Photochemical transformations on plasmonic metal nanoparticles
journal, May 2015

  • Linic, Suljo; Aslam, Umar; Boerigter, Calvin
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4281

Photodetection with Active Optical Antennas
journal, May 2011

  • Knight, M. W.; Sobhani, H.; Nordlander, P.
  • Science, Vol. 332, Issue 6030, p. 702-704
  • DOI: 10.1126/science.1203056

Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
journal, November 2011

  • Linic, Suljo; Christopher, Phillip; Ingram, David B.
  • Nature Materials, Vol. 10, Issue 12
  • DOI: 10.1038/nmat3151