skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theoretical investigation of relaxation dynamics in the Au18 (SH)14 thiolate-protected gold nanocluster

Abstract

Experimental findings of Au18(GSH)14 as a photosensitizer with the highest potential compared to other glutathione-protected clusters demand understanding the photophysics and relaxation dynamics of the Au18(SR)14 cluster. To this end, we perform ab initio real-time nonadiabatic molecular dynamics simulations on Au18(SH)14 to investigate its relaxation dynamics compared to the well-studied [Au25(SR)18]-1 relaxation dynamics. In this work, the excitations covering up to ~2.6 eV in the optical absorption spectrum are analyzed to understand the electronic relaxation process of the Au18(SH)14 cluster. The ground state growth times of Au18(SH)14 are several orders of magnitude shorter than the growth times observed for the [Au25(SH)18]-1 nanocluster. The S1 (HOMO-LUMO) state gives the slowest decay time (~11 ps) among all the states (S1–S30) considered similar to [Au25(SH)18]-1. However, the S1 state in Au18(SH)14 is a semiring-to-core charge transfer state, whereas S1 in the [Au25(SH)18]-1 cluster is a core-to-core transition. The remaining higher excited states have very short decay time constants less than 1.4 ps except for S2 which has the second slowest decay of 6.4 ps. The hole relaxations are faster than the electron relaxations in Au18(SH)14 due to the closely packed HOMOs in the electronic structure. Radiative relaxations are also examined using the time-dependentmore » density functional theory method, and the excited state emission energy and lifetime are found to be in good agreement with experiment« less

Authors:
 [1]; ORCiD logo [1]
  1. Kansas State Univ,, Manhattan, KS (United States)
Publication Date:
Research Org.:
Kansas State Univ., Manhattan, KS (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1611752
Alternate Identifier(s):
OSTI ID: 1560251
Grant/Contract Number:  
SC0012273; CHE-1726332; CNS-1006860; EPS-1006860; EPS-0919443
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 151; Journal Issue: 9; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; chemistry; physics

Citation Formats

Senanayake, Ravithree D., and Aikens, Christine M. Theoretical investigation of relaxation dynamics in the Au18 (SH)14 thiolate-protected gold nanocluster. United States: N. p., 2019. Web. https://doi.org/10.1063/1.5116902.
Senanayake, Ravithree D., & Aikens, Christine M. Theoretical investigation of relaxation dynamics in the Au18 (SH)14 thiolate-protected gold nanocluster. United States. https://doi.org/10.1063/1.5116902
Senanayake, Ravithree D., and Aikens, Christine M. Sat . "Theoretical investigation of relaxation dynamics in the Au18 (SH)14 thiolate-protected gold nanocluster". United States. https://doi.org/10.1063/1.5116902. https://www.osti.gov/servlets/purl/1611752.
@article{osti_1611752,
title = {Theoretical investigation of relaxation dynamics in the Au18 (SH)14 thiolate-protected gold nanocluster},
author = {Senanayake, Ravithree D. and Aikens, Christine M.},
abstractNote = {Experimental findings of Au18(GSH)14 as a photosensitizer with the highest potential compared to other glutathione-protected clusters demand understanding the photophysics and relaxation dynamics of the Au18(SR)14 cluster. To this end, we perform ab initio real-time nonadiabatic molecular dynamics simulations on Au18(SH)14 to investigate its relaxation dynamics compared to the well-studied [Au25(SR)18]-1 relaxation dynamics. In this work, the excitations covering up to ~2.6 eV in the optical absorption spectrum are analyzed to understand the electronic relaxation process of the Au18(SH)14 cluster. The ground state growth times of Au18(SH)14 are several orders of magnitude shorter than the growth times observed for the [Au25(SH)18]-1 nanocluster. The S1 (HOMO-LUMO) state gives the slowest decay time (~11 ps) among all the states (S1–S30) considered similar to [Au25(SH)18]-1. However, the S1 state in Au18(SH)14 is a semiring-to-core charge transfer state, whereas S1 in the [Au25(SH)18]-1 cluster is a core-to-core transition. The remaining higher excited states have very short decay time constants less than 1.4 ps except for S2 which has the second slowest decay of 6.4 ps. The hole relaxations are faster than the electron relaxations in Au18(SH)14 due to the closely packed HOMOs in the electronic structure. Radiative relaxations are also examined using the time-dependent density functional theory method, and the excited state emission energy and lifetime are found to be in good agreement with experiment},
doi = {10.1063/1.5116902},
journal = {Journal of Chemical Physics},
number = 9,
volume = 151,
place = {United States},
year = {2019},
month = {9}
}

Works referenced in this record:

Origin of Photoluminescence of Ag 25 (SR) 18 Nanoparticles: Ligand and Doping Effect
journal, January 2018

  • Weerawardene, K. L. Dimuthu M.; Aikens, Christine M.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 4
  • DOI: 10.1021/acs.jpcc.7b11706

The PYXAID Program for Non-Adiabatic Molecular Dynamics in Condensed Matter Systems
journal, October 2013

  • Akimov, Alexey V.; Prezhdo, Oleg V.
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 11
  • DOI: 10.1021/ct400641n

Size Dependence of Atomically Precise Gold Nanoclusters in Chemoselective Hydrogenation and Active Site Structure
journal, June 2014

  • Li, Gao; Jiang, De-en; Kumar, Santosh
  • ACS Catalysis, Vol. 4, Issue 8
  • DOI: 10.1021/cs500533h

Magic-Numbered Au n Clusters Protected by Glutathione Monolayers ( n = 18, 21, 25, 28, 32, 39):  Isolation and Spectroscopic Characterization
journal, June 2004

  • Negishi, Yuichi; Takasugi, Yoshimitsu; Sato, Seiichi
  • Journal of the American Chemical Society, Vol. 126, Issue 21
  • DOI: 10.1021/ja0483589

Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster
journal, April 2002


Electronic Structure of Ligand-Passivated Gold and Silver Nanoclusters
journal, December 2010

  • Aikens, Christine M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 2
  • DOI: 10.1021/jz101499g

Theoretical Investigation of Electron and Nuclear Dynamics in the [Au 25 (SH) 18 ] −1 Thiolate-Protected Gold Nanocluster
journal, November 2016

  • Senanayake, Ravithree D.; Akimov, Alexey V.; Aikens, Christine M.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 20
  • DOI: 10.1021/acs.jpcc.6b09731

Trajectory Surface Hopping in the Time-Dependent Kohn-Sham Approach for Electron-Nuclear Dynamics
journal, October 2005


Synthesis and structural characterisation of hexakis(triphenyl phosphine)hexagold(2+) nitrate, [Au6(PPh3)6][NO3]2, and related clusters with edgesharing bitetrahedral geometries
journal, January 1986

  • Briant, Clive E.; Hall, Kevin P.; Mingos, D. Michael P.
  • Journal of the Chemical Society, Dalton Transactions, Issue 3
  • DOI: 10.1039/dt9860000687

Scalable and Precise Synthesis of Thiolated Au 10–12 , Au 15 , Au 18 , and Au 25 Nanoclusters via pH Controlled CO Reduction
journal, March 2013

  • Yu, Yong; Chen, Xi; Yao, Qiaofeng
  • Chemistry of Materials, Vol. 25, Issue 6
  • DOI: 10.1021/cm304098x

Nonsuperatomic [Au 23 (SC 6 H 11 ) 16 ] Nanocluster Featuring Bipyramidal Au 15 Kernel and Trimeric Au 3 (SR) 4 Motif
journal, November 2013

  • Das, Anindita; Li, Tao; Nobusada, Katsuyuki
  • Journal of the American Chemical Society, Vol. 135, Issue 49
  • DOI: 10.1021/ja409177s

Decoherence-induced surface hopping
journal, December 2012

  • Jaeger, Heather M.; Fischer, Sean; Prezhdo, Oleg V.
  • The Journal of Chemical Physics, Vol. 137, Issue 22
  • DOI: 10.1063/1.4757100

Two-Phase Synthesis of Small Thiolate-Protected Au 15 and Au 18 Nanoclusters
journal, February 2013


Chemistry with ADF
journal, January 2001

  • te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.
  • Journal of Computational Chemistry, Vol. 22, Issue 9, p. 931-967
  • DOI: 10.1002/jcc.1056

Structure Determination of [Au 18 (SR) 14 ]
journal, January 2015

  • Das, Anindita; Liu, Chong; Byun, Hee Young
  • Angewandte Chemie International Edition, Vol. 54, Issue 10
  • DOI: 10.1002/anie.201410161

Metal-Cluster-Sensitized Solar Cells. A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater Than 2%
journal, June 2013

  • Chen, Yong-Siou; Choi, Hyunbong; Kamat, Prashant V.
  • Journal of the American Chemical Society, Vol. 135, Issue 24
  • DOI: 10.1021/ja403807f

Mixed quantum–classical dynamics
journal, January 1998


Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles
journal, June 2017


Unique Ultrafast Visible Luminescence in Monolayer-Protected Au 25 Clusters
journal, December 2010

  • Devadas, Mary Sajini; Kim, Junhyung; Sinn, Ekkehard
  • The Journal of Physical Chemistry C, Vol. 114, Issue 51
  • DOI: 10.1021/jp107033n

Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities
journal, September 2016


Exploring Interfacial Events in Gold-Nanocluster-Sensitized Solar Cells: Insights into the Effects of the Cluster Size and Electrolyte on Solar Cell Performance
journal, December 2015

  • Abbas, Muhammad A.; Kim, Tea-Yon; Lee, Sang Uck
  • Journal of the American Chemical Society, Vol. 138, Issue 1
  • DOI: 10.1021/jacs.5b11174

Advanced Capabilities of the PYXAID Program: Integration Schemes, Decoherence Effects, Multiexcitonic States, and Field-Matter Interaction
journal, January 2014

  • Akimov, Alexey V.; Prezhdo, Oleg V.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 2
  • DOI: 10.1021/ct400934c

On the structure of the Au18(SR)14 cluster
journal, January 2012

  • Tlahuice, Alfredo; Garzón, Ignacio L.
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 11
  • DOI: 10.1039/c2cp24016e

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


One-Step Route to Luminescent Au 18 SG 14 in the Condensed Phase and Its Closed Shell Molecular Ions in the Gas Phase
journal, July 2012

  • Ghosh, Atanu; Udayabhaskararao, Thumu; Pradeep, Thalappil
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 15
  • DOI: 10.1021/jz3007436

The Structure and Optical Properties of the [Au 18 (SR) 14 ] Nanocluster
journal, January 2015

  • Chen, Shuang; Wang, Shuxin; Zhong, Juan
  • Angewandte Chemie International Edition, Vol. 54, Issue 10
  • DOI: 10.1002/anie.201410295

Gold–Thiolate Ring as a Protecting Motif in the Au 20 (SR) 16 Nanocluster and Implications
journal, August 2014

  • Zeng, Chenjie; Liu, Chong; Chen, Yuxiang
  • Journal of the American Chemical Society, Vol. 136, Issue 34
  • DOI: 10.1021/ja506802n

A Single Model for the Excited-State Dynamics of Au 18 (SR) 14 and Au 25 (SR) 18 Clusters
journal, August 2018

  • Yousefalizadeh, Goonay; Stamplecoskie, Kevin G.
  • The Journal of Physical Chemistry A, Vol. 122, Issue 35
  • DOI: 10.1021/acs.jpca.8b07072

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Atomically Precise Gold Nanoclusters as New Model Catalysts
journal, March 2013

  • Li, Gao; Jin, Rongchao
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar300213z

Excited-State Behavior of Luminescent Glutathione-Protected Gold Clusters
journal, December 2013

  • Stamplecoskie, Kevin G.; Chen, Yong-Siou; Kamat, Prashant V.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 2
  • DOI: 10.1021/jp410856h

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/physrevlett.77.3865

Quantum sized, thiolate-protected gold nanoclusters
journal, January 2010


Theoretical Insights into the Origin of Photoluminescence of Au 25 (SR) 18 Nanoparticles
journal, August 2016

  • Weerawardene, K. L. Dimuthu M.; Aikens, Christine M.
  • Journal of the American Chemical Society, Vol. 138, Issue 35
  • DOI: 10.1021/jacs.6b05293

Femtosecond Relaxation Dynamics of Au 25 L 18 Monolayer-Protected Clusters
journal, May 2009

  • Miller, Stephen A.; Womick, Jordan M.; Parker, Joseph F.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 22
  • DOI: 10.1021/jp9025046

Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties
journal, May 2008

  • Zhu, Manzhou; Aikens, Christine M.; Hollander, Frederick J.
  • Journal of the American Chemical Society, Vol. 130, Issue 18, p. 5883-5885
  • DOI: 10.1021/ja801173r

Glutathione-Capped Gold Nanoclusters as Photosensitizers. Visible Light-Induced Hydrogen Generation in Neutral Water
journal, April 2014

  • Chen, Yong-Siou; Kamat, Prashant V.
  • Journal of the American Chemical Society, Vol. 136, Issue 16
  • DOI: 10.1021/ja5017365

Electronic Properties of Small Particles
journal, January 1984


Fluorescent Au nanoclusters: recent progress and sensing applications
journal, January 2014


Conversion of Anionic [Au 25 (SCH 2 CH 2 Ph) 18 ] Cluster to Charge Neutral Cluster via Air Oxidation
journal, July 2008

  • Zhu, Manzhou; Eckenhoff, William T.; Pintauer, Tomislav
  • The Journal of Physical Chemistry C, Vol. 112, Issue 37
  • DOI: 10.1021/jp805786p

A grand unified model for liganded gold clusters
journal, December 2016

  • Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13574

Size-Dependent Excited State Behavior of Glutathione-Capped Gold Clusters and Their Light-Harvesting Capacity
journal, July 2014

  • Stamplecoskie, Kevin G.; Kamat, Prashant V.
  • Journal of the American Chemical Society, Vol. 136, Issue 31
  • DOI: 10.1021/ja505361n

Stable Au 25 (SR) 18 /TiO 2 Composite Nanostructure with Enhanced Visible Light Photocatalytic Activity
journal, August 2013

  • Yu, Changlin; Li, Gao; Kumar, Santosh
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 17
  • DOI: 10.1021/jz401447w

Crystal Structure of the Gold Nanoparticle [N(C 8 H 17 ) 4 ][Au 25 (SCH 2 CH 2 Ph) 18 ]
journal, March 2008

  • Heaven, Michael W.; Dass, Amala; White, Peter S.
  • Journal of the American Chemical Society, Vol. 130, Issue 12
  • DOI: 10.1021/ja800561b

Total Structure Determination of Thiolate-Protected Au 38 Nanoparticles
journal, June 2010

  • Qian, Huifeng; Eckenhoff, William T.; Zhu, Yan
  • Journal of the American Chemical Society, Vol. 132, Issue 24
  • DOI: 10.1021/ja103592z

Relativistic regular two‐component Hamiltonians
journal, September 1993

  • Lenthe, E. van; Baerends, E. J.; Snijders, J. G.
  • The Journal of Chemical Physics, Vol. 99, Issue 6
  • DOI: 10.1063/1.466059

Gold clusters containing bidentate phosphine ligands. Preparation and X-Ray structure investigation of [Au5(dppmH)3(dppm)](NO3)2 and [Au13(dppmH)6](NO3)n
journal, January 1981

  • van der Velden, J. W. A.; Vollenbroek, F. A.; Bour, J. J.
  • Recueil des Travaux Chimiques des Pays-Bas, Vol. 100, Issue 4
  • DOI: 10.1002/recl.19811000404