DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Immobilization of “Capping Arene” Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation

Abstract

We report the synthesis, characterization, and electrocatalytic water oxidation activity of two cobalt complexes, (6-FP)Co(NO3)2 (1) (6-FP = 8,8'-(1,2-phenylene)diquinoline) and (5-FP)Co(NO3)2 (2) (5-FP = 1,2-bis(N-7-azaindolyl)benzene), containing “capping arene” bidentate ligands with nitrogen atom donors. The cobalt complexes 1 and 2 were supported on ordered mesoporous carbon (OMC) by π–π stacking, resulting in heterogenized cobalt materials 6-FP-Co-OMC-1 and 5-FP-Co-OMC-2, respectively, and studied for electrocatalytic water oxidation. We find that 6-FP-Co-OMC-1 exhibits an overpotential of 355 mV for a current density of 10 mA cm–2 and a turnover frequency (TOF) of ~0.53 s–1 at an overpotential of 400 mV at pH 14. 6-FP-Co-OMC-1 exhibits activity that is ~1.6 times that of 5-FP-Co-OMC-2, which gives a TOF of 0.32 s–1 at 400 mV overpotential. The structural stability of the single-atom Co site was demonstrated for 6-FP-Co-OMC-1 using X-ray absorption spectroscopy for the molecular complex supported on OMC, but slow degradation in catalyst activity can be attributed to eventual formation of Co oxide clusters. DFT computations of electrocatalytic water oxidation using the molecular complexes as models provide a description of the catalytic mechanism. These studies reveal that the mechanism for O–O bond formation involves an intermediate CoIV oxo complex that undergoes an intramolecular reductivemore » O–O coupling to form a CoII–OOH species. Further, the calculations predict that the molecular 6-FP-Co structure is more active for electrocatalytic water oxidation than 5-FP-Co, which is consistent with experimental studies of 6-FP-Co-OMC-1 and 5-FP-Co-OMC-2, highlighting the possibility that the ligand structure influences the catalytic activity of the supported molecular catalysts.« less

Authors:
ORCiD logo [1];  [1];  [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [3];  [4];  [4]; ORCiD logo [5]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Virginia, Charlottesville, VA (United States)
  2. California Institute of Technology (CalTech), Pasadena, CA (United States)
  3. Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr (Germany)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1856774
Alternate Identifier(s):
OSTI ID: 1889709
Report Number(s):
BNL-222885-2022-JAAM
Journal ID: ISSN 2155-5435
Grant/Contract Number:  
SC0012704; CBET-1805022; CBET-2005250; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 11; Journal Issue: 24; Related Information: This article has been corrected related to duplicate figures. See https://doi.org/10.1021/acscatal.2c00122; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; cobalt; ordered mesoporous carbon; supported catalyst; electrocatalysis water; oxidation; conducting carbon

Citation Formats

Liu, Chang, Geer, Ana M., Webber, Christopher, Musgrave III, Charles B., Gu, Shunyan, Johnson, Grayson, Dickie, Diane A., Chabbra, Sonia, Schnegg, Alexander, Zhou, Hua, Sun, Cheng-Jun, Hwang, Sooyeon, Goddard III, William A., Zhang, Sen, and Gunnoe, T. Brent. Immobilization of “Capping Arene” Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. United States: N. p., 2021. Web. doi:10.1021/acscatal.1c04617.
Liu, Chang, Geer, Ana M., Webber, Christopher, Musgrave III, Charles B., Gu, Shunyan, Johnson, Grayson, Dickie, Diane A., Chabbra, Sonia, Schnegg, Alexander, Zhou, Hua, Sun, Cheng-Jun, Hwang, Sooyeon, Goddard III, William A., Zhang, Sen, & Gunnoe, T. Brent. Immobilization of “Capping Arene” Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. United States. https://doi.org/10.1021/acscatal.1c04617
Liu, Chang, Geer, Ana M., Webber, Christopher, Musgrave III, Charles B., Gu, Shunyan, Johnson, Grayson, Dickie, Diane A., Chabbra, Sonia, Schnegg, Alexander, Zhou, Hua, Sun, Cheng-Jun, Hwang, Sooyeon, Goddard III, William A., Zhang, Sen, and Gunnoe, T. Brent. Thu . "Immobilization of “Capping Arene” Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation". United States. https://doi.org/10.1021/acscatal.1c04617. https://www.osti.gov/servlets/purl/1856774.
@article{osti_1856774,
title = {Immobilization of “Capping Arene” Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation},
author = {Liu, Chang and Geer, Ana M. and Webber, Christopher and Musgrave III, Charles B. and Gu, Shunyan and Johnson, Grayson and Dickie, Diane A. and Chabbra, Sonia and Schnegg, Alexander and Zhou, Hua and Sun, Cheng-Jun and Hwang, Sooyeon and Goddard III, William A. and Zhang, Sen and Gunnoe, T. Brent},
abstractNote = {We report the synthesis, characterization, and electrocatalytic water oxidation activity of two cobalt complexes, (6-FP)Co(NO3)2 (1) (6-FP = 8,8'-(1,2-phenylene)diquinoline) and (5-FP)Co(NO3)2 (2) (5-FP = 1,2-bis(N-7-azaindolyl)benzene), containing “capping arene” bidentate ligands with nitrogen atom donors. The cobalt complexes 1 and 2 were supported on ordered mesoporous carbon (OMC) by π–π stacking, resulting in heterogenized cobalt materials 6-FP-Co-OMC-1 and 5-FP-Co-OMC-2, respectively, and studied for electrocatalytic water oxidation. We find that 6-FP-Co-OMC-1 exhibits an overpotential of 355 mV for a current density of 10 mA cm–2 and a turnover frequency (TOF) of ~0.53 s–1 at an overpotential of 400 mV at pH 14. 6-FP-Co-OMC-1 exhibits activity that is ~1.6 times that of 5-FP-Co-OMC-2, which gives a TOF of 0.32 s–1 at 400 mV overpotential. The structural stability of the single-atom Co site was demonstrated for 6-FP-Co-OMC-1 using X-ray absorption spectroscopy for the molecular complex supported on OMC, but slow degradation in catalyst activity can be attributed to eventual formation of Co oxide clusters. DFT computations of electrocatalytic water oxidation using the molecular complexes as models provide a description of the catalytic mechanism. These studies reveal that the mechanism for O–O bond formation involves an intermediate CoIV oxo complex that undergoes an intramolecular reductive O–O coupling to form a CoII–OOH species. Further, the calculations predict that the molecular 6-FP-Co structure is more active for electrocatalytic water oxidation than 5-FP-Co, which is consistent with experimental studies of 6-FP-Co-OMC-1 and 5-FP-Co-OMC-2, highlighting the possibility that the ligand structure influences the catalytic activity of the supported molecular catalysts.},
doi = {10.1021/acscatal.1c04617},
journal = {ACS Catalysis},
number = 24,
volume = 11,
place = {United States},
year = {Thu Dec 02 00:00:00 EST 2021},
month = {Thu Dec 02 00:00:00 EST 2021}
}

Works referenced in this record:

Cobalt Catalyst with a Proton-Responsive Ligand for Water Oxidation
journal, December 2014

  • Siewert, Inke; Gałęzowska, Joanna
  • Chemistry - A European Journal, Vol. 21, Issue 7
  • DOI: 10.1002/chem.201405020

Rhodium Bis(quinolinyl)benzene Complexes for Methane Activation and Functionalization
journal, November 2014

  • Fu, Ross; O'Reilly, Matthew E.; Nielsen, Robert J.
  • Chemistry - A European Journal, Vol. 21, Issue 3
  • DOI: 10.1002/chem.201405460

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface
journal, December 2020


Recent Advances in the Development of Molecular Catalyst‐Based Anodes for Water Oxidation toward Artificial Photosynthesis
journal, November 2018

  • Zahran, Zaki N.; Tsubonouchi, Yuta; Mohamed, Eman A.
  • ChemSusChem, Vol. 12, Issue 9
  • DOI: 10.1002/cssc.201802795

Intramolecular hydrogen-bonding in a cobalt aqua complex and electrochemical water oxidation activity
journal, January 2018

  • Khosrowabadi Kotyk, Juliet F.; Hanna, Caitlin M.; Combs, Rebecca L.
  • Chemical Science, Vol. 9, Issue 10
  • DOI: 10.1039/C7SC04960A

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Catalysis of a Single Transition Metal Site for Water Oxidation: From Mononuclear Molecules to Single Atoms
journal, December 2019

  • Zhang, Huayang; Tian, Wenjie; Duan, Xiaoguang
  • Advanced Materials, Vol. 32, Issue 18
  • DOI: 10.1002/adma.201904037

Distinguishing Homogeneous from Heterogeneous Catalysis in Electrode-Driven Water Oxidation with Molecular Iridium Complexes
journal, July 2011

  • Schley, Nathan D.; Blakemore, James D.; Subbaiyan, Navaneetha K.
  • Journal of the American Chemical Society, Vol. 133, Issue 27
  • DOI: 10.1021/ja2004522

Re-Investigation of Cobalt Porphyrin for Electrochemical Water Oxidation on FTO Surface: Formation of CoOx as Active Species
journal, January 2017


Consecutive Ligand‐Based Electron Transfer in New Molecular Copper‐Based Water Oxidation Catalysts
journal, July 2021

  • Gil‐Sepulcre, Marcos; Garrido‐Barros, Pablo; Oldengott, Jan
  • Angewandte Chemie International Edition, Vol. 60, Issue 34
  • DOI: 10.1002/anie.202104020

How a [Co IV ${^{\underline{.....}}}$O] 2+ Fragment Oxidizes Water: Involvement of a Biradicaloid [Co II -(⋅O⋅)] 2+ Species in Forming the OO Bond
journal, January 2015

  • Crandell, Douglas W.; Ghosh, Soumya; Berlinguette, Curtis P.
  • ChemSusChem, Vol. 8, Issue 5
  • DOI: 10.1002/cssc.201403024

Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design
journal, July 2021


Rhodium and Iridium Complexes Bearing “Capping Arene” Ligands: Synthesis and Characterization
journal, August 2021


Catalytic Synthesis of Superlinear Alkenyl Arenes Using a Rh(I) Catalyst Supported by a “Capping Arene” Ligand: Access to Aerobic Catalysis
journal, November 2018

  • Chen, Junqi; Nielsen, Robert J.; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 140, Issue 49
  • DOI: 10.1021/jacs.8b07728

The development of molecular water oxidation catalysts
journal, April 2019

  • Matheu, Roc; Garrido-Barros, Pablo; Gil-Sepulcre, Marcos
  • Nature Reviews Chemistry, Vol. 3, Issue 5
  • DOI: 10.1038/s41570-019-0096-0

Mono‐/Multinuclear Water Oxidation Catalysts
journal, June 2019


Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction
journal, May 2018

  • Xiao, Hai; Shin, Hyeyoung; Goddard, William A.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 23
  • DOI: 10.1073/pnas.1722034115

Cobalt corroles with phosphonic acid pendants as catalysts for oxygen and hydrogen evolution from neutral aqueous solution
journal, January 2017

  • Sun, Huiling; Han, Yongzhen; Lei, Haitao
  • Chemical Communications, Vol. 53, Issue 46
  • DOI: 10.1039/C7CC02400B

The electrification of energy: Long-term trends and opportunities
journal, January 2018

  • Tsao, Jeffrey Y.; Schubert, E. Fred; Fouquet, Roger
  • MRS Energy & Sustainability, Vol. 5
  • DOI: 10.1557/mre.2018.6

Revised Basis Sets for the LANL Effective Core Potentials
journal, June 2008

  • Roy, Lindsay E.; Hay, P. Jeffrey; Martin, Richard L.
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 7
  • DOI: 10.1021/ct8000409

Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges
journal, January 2016

  • Kärkäs, Markus D.; Åkermark, Björn
  • Dalton Transactions, Vol. 45, Issue 37
  • DOI: 10.1039/C6DT00809G

Homogeneous Catalysts Based on First‐Row Transition‐Metals for Electrochemical Water Oxidation
journal, October 2020


In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
journal, August 2008


Electrochemical evidence for catalytic water oxidation mediated by a high-valent cobalt complex
journal, January 2011

  • Wasylenko, Derek J.; Ganesamoorthy, Chelladurai; Borau-Garcia, Javier
  • Chemical Communications, Vol. 47, Issue 14
  • DOI: 10.1039/c0cc05522k

Simultaneous Reduction of CO 2 and Splitting of H 2 O by a Single Immobilized Cobalt Phthalocyanine Electrocatalyst
journal, April 2016

  • Morlanés, Natalia; Takanabe, Kazuhiro; Rodionov, Valentin
  • ACS Catalysis, Vol. 6, Issue 5
  • DOI: 10.1021/acscatal.6b00543

Electronic, mechanistic, and structural factors that influence the performance of molecular water oxidation catalysts anchored on electrode surfaces
journal, June 2019

  • Garrido-Barros, Pablo; Matheu, Roc; Gimbert-Suriñach, Carolina
  • Current Opinion in Electrochemistry, Vol. 15
  • DOI: 10.1016/j.coelec.2019.04.027

Single Electron Transfer Steps in Water Oxidation Catalysis. Redefining the Mechanistic Scenario
journal, February 2017

  • Funes-Ardoiz, Ignacio; Garrido-Barros, Pablo; Llobet, Antoni
  • ACS Catalysis, Vol. 7, Issue 3
  • DOI: 10.1021/acscatal.6b03253

Immobilization of an Amphiphilic Molecular Cobalt Catalyst on Carbon Black for Ligand-Assisted Water Oxidation
journal, May 2018


A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

The effect of the trans axial ligand of cobalt corroles on water oxidation activity in neutral aqueous solutions
journal, January 2017

  • Xu, Liang; Lei, Haitao; Zhang, Zongyao
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 15
  • DOI: 10.1039/C6CP08495H

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Perfluorinated Cobalt Phthalocyanine Effectively Catalyzes Water Electrooxidation
journal, December 2014

  • Morlanés, Natalia; Joya, Khurram S.; Takanabe, Kazuhiro
  • European Journal of Inorganic Chemistry, Vol. 2015, Issue 1
  • DOI: 10.1002/ejic.201403015

Functionalization of Rh III –Me Bonds: Use of “Capping Arene” Ligands to Facilitate Me–X Reductive Elimination
journal, May 2021


Regioselective C−H Activation of Toluene with a 1,2-Bis( N- 7-azaindolyl)benzene Platinum(II) Complex
journal, June 2005

  • Zhao, Shu-Bin; Song, Datong; Jia, Wen-Li
  • Organometallics, Vol. 24, Issue 13
  • DOI: 10.1021/om050133z

Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex
journal, September 2021

  • Li, Xialiang; Zhang, Xue-Peng; Guo, Mian
  • Journal of the American Chemical Society, Vol. 143, Issue 36
  • DOI: 10.1021/jacs.1c05204

Electrocatalytic water oxidation by a molecular cobalt complex through a high valent cobalt oxo intermediate
journal, January 2016

  • Das, Debasree; Pattanayak, Santanu; Singh, Kundan K.
  • Chemical Communications, Vol. 52, Issue 79
  • DOI: 10.1039/C6CC05773J

Macrocyclic cyanocobalamin (vitamin B 12 ) as a homogeneous electrocatalyst for water oxidation under neutral conditions
journal, January 2020

  • Shahadat, Hossain M.; Younus, Hussein A.; Ahmad, Nazir
  • Chemical Communications, Vol. 56, Issue 13
  • DOI: 10.1039/C9CC08838E

Electocatalytic Water Oxidation by Cobalt(III) Hangman β-Octafluoro Corroles
journal, June 2011

  • Dogutan, Dilek K.; McGuire, Robert; Nocera, Daniel G.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja202138m

Cobalt-Bridged Ionic Liquid Polymer on a Carbon Nanotube for Enhanced Oxygen Evolution Reaction Activity
journal, February 2018

  • Ding, Yuxiao; Klyushin, Alexander; Huang, Xing
  • Angewandte Chemie International Edition, Vol. 57, Issue 13
  • DOI: 10.1002/anie.201711688

Efficient water oxidation with electromodified Langmuir–Blodgett films of procatalytic [Co III (N 2 O 3 )] metallosurfactants on electrodes
journal, January 2016

  • Gonawala, Sunalee; Baydoun, Habib; Wickramasinghe, Lanka
  • Chemical Communications, Vol. 52, Issue 54
  • DOI: 10.1039/C6CC03263J

The Reaction Mechanism with Free Energy Barriers at Constant Potentials for the Oxygen Evolution Reaction at the IrO 2 (110) Surface
journal, December 2016

  • Ping, Yuan; Nielsen, Robert J.; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b07557

Imidazole for Pyridine Substitution Leads to Enhanced Activity Under Milder Conditions in Cobalt Water Oxidation Electrocatalysis
journal, December 2018


Electrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex
journal, June 2021

  • Geer, Ana M.; Musgrave III, Charles; Webber, Christopher
  • ACS Catalysis, Vol. 11, Issue 12
  • DOI: 10.1021/acscatal.1c01395

Principles of Water Electrolysis and Recent Progress in Cobalt‐, Nickel‐, and Iron‐Based Oxides for the Oxygen Evolution Reaction
journal, July 2021

  • Yu, Mingquan; Budiyanto, Eko; Tüysüz, Harun
  • Angewandte Chemie International Edition, Vol. 61, Issue 1
  • DOI: 10.1002/anie.202103824

Poisson−Boltzmann Analytical Gradients for Molecular Modeling Calculations
journal, April 1999

  • Friedrichs, Mark; Zhou, Ruhong; Edinger, Shlomit R.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 16
  • DOI: 10.1021/jp982513m

Interrogation of electrocatalytic water oxidation mediated by a cobalt complex
journal, January 2012

  • Wasylenko, Derek J.; Palmer, Ryan D.; Schott, Eduardo
  • Chemical Communications, Vol. 48, Issue 15
  • DOI: 10.1039/c2cc16674g

Reactive Intermediates Involved in Cobalt Corrole Catalyzed Water Oxidation (and Oxygen Reduction)
journal, December 2017


Comparison of Cobalt-based Nanoparticles as Electrocatalysts for Water Oxidation
journal, October 2011


Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base
journal, September 2013

  • Wang, D.; Groves, J. T.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 39
  • DOI: 10.1073/pnas.1315383110

Water oxidation catalyzed by two cobalt complexes: new challenges and questions
journal, January 2018

  • Najafpour, Mohammad Mahdi; Feizi, Hadi
  • Catalysis Science & Technology, Vol. 8, Issue 7
  • DOI: 10.1039/C7CY02602A

Ab Initio Effective Potentials for Use in Molecular Calculations
journal, March 1972

  • Kahn, Luis R.; Goddard, William A.
  • The Journal of Chemical Physics, Vol. 56, Issue 6
  • DOI: 10.1063/1.1677597

Surface Immobilization of Molecular Electrocatalysts for Energy Conversion
journal, March 2017

  • Bullock, R. Morris; Das, Atanu K.; Appel, Aaron M.
  • Chemistry - A European Journal, Vol. 23, Issue 32
  • DOI: 10.1002/chem.201605066

Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences
journal, July 2013

  • Bochevarov, Art D.; Harder, Edward; Hughes, Thomas F.
  • International Journal of Quantum Chemistry, Vol. 113, Issue 18
  • DOI: 10.1002/qua.24481

A Robust Molecular Catalyst Generated In Situ for Photo- and Electrochemical Water Oxidation
journal, February 2017

  • Younus, Hussein A.; Ahmad, Nazir; Chughtai, Adeel H.
  • ChemSusChem, Vol. 10, Issue 5
  • DOI: 10.1002/cssc.201601477

Highly Ordered Mesoporous Few-Layer Graphene Frameworks Enabled by Fe 3 O 4 Nanocrystal Superlattices
journal, March 2015

  • Jiao, Yucong; Han, Dandan; Liu, Limin
  • Angewandte Chemie International Edition, Vol. 54, Issue 19
  • DOI: 10.1002/anie.201501398

Theoretical Study of the Mechanisms of Two Copper Water Oxidation Electrocatalysts with Bipyridine Ligands
journal, August 2019


Practical challenges in the development of photoelectrochemical solar fuels production
journal, January 2020

  • Spitler, Mark T.; Modestino, Miguel A.; Deutsch, Todd G.
  • Sustainable Energy & Fuels, Vol. 4, Issue 3
  • DOI: 10.1039/C9SE00869A

Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes
journal, June 2013

  • Kent, Caleb A.; Concepcion, Javier J.; Dares, Christopher J.
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja400616a

Water Oxidation Catalysts for Artificial Photosynthesis
journal, July 2019


Elucidation of Factors That Govern the 2e /2H + vs 4e /4H + Selectivity of Water Oxidation by a Cobalt Corrole
journal, December 2020

  • Mondal, Biswajit; Chattopadhyay, Samir; Dey, Subal
  • Journal of the American Chemical Society, Vol. 142, Issue 50
  • DOI: 10.1021/jacs.0c08654

Redox-Active Ligand Assisted Multielectron Catalysis: A Case of Co III Complex as Water Oxidation Catalyst
journal, January 2018

  • Du, Hao-Yi; Chen, Si-Cong; Su, Xiao-Jun
  • Journal of the American Chemical Society, Vol. 140, Issue 4
  • DOI: 10.1021/jacs.8b00032

Cobalt porphyrins as homogeneous catalysts for water oxidation
journal, January 2013

  • Nakazono, Takashi; Parent, Alexander Rene; Sakai, Ken
  • Chemical Communications, Vol. 49, Issue 56
  • DOI: 10.1039/c3cc43031f

Frontispiece: Fighting Deactivation: Classical and Emerging Strategies for Efficient Stabilization of Molecular Electrocatalysts
journal, March 2020

  • Bairagya, Monojit Das; Bujol, Ryan J.; Elgrishi, Noémie
  • Chemistry – A European Journal, Vol. 26, Issue 18
  • DOI: 10.1002/chem.202081867

Design of molecular water oxidation catalysts with earth-abundant metal ions
journal, January 2021

  • Kondo, Mio; Tatewaki, Hayato; Masaoka, Shigeyuki
  • Chemical Society Reviews, Vol. 50, Issue 12
  • DOI: 10.1039/D0CS01442G

Enzyme‐Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions
journal, February 2021

  • Xie, Lisi; Zhang, Xue‐Peng; Zhao, Bin
  • Angewandte Chemie International Edition, Vol. 60, Issue 14
  • DOI: 10.1002/anie.202015478

Heterogeneous Water Oxidation Catalysts for Molecular Anodes and Photoanodes
journal, January 2021


Noncovalent Immobilization of Pentamethylcyclopentadienyl Iridium Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation
journal, August 2021


Transition-Metal-Mediated Nucleophilic Aromatic Substitution with Acids
journal, June 2016


Long-Range C–H Bond Activation by Rh III -Carboxylates
journal, October 2014

  • O’Reilly, Matthew E.; Fu, Ross; Nielsen, Robert J.
  • Journal of the American Chemical Society, Vol. 136, Issue 42
  • DOI: 10.1021/ja508367m

Redox-Active Ligands in Electroassisted Catalytic H + and CO 2 Reductions: Benefits and Risks
journal, March 2021


Molecular Catalysts for Water Oxidation
journal, July 2015