DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Catalytic Synthesis of Superlinear Alkenyl Arenes Using a Rh(I) Catalyst Supported by a “Capping Arene” Ligand: Access to Aerobic Catalysis

Abstract

Alkyl and alkenyl arenes are used in a wide range of products. Yet, the synthesis of 1-phenylalkanes or their alkenyl variants from arenes and alkenes is not accessible with current commercial acid-based catalytic processes. Here, it is reported that an air-stable Rh(I) complex, (5-FP)Rh(TFA)(η2-C2H4) (5-FP = 1,2-bis(N-7-azaindolyl)benzene; TFA = trifluoroacetate), serves as a catalyst precursor for the oxidative conversion of arenes and alkenes to alkenyl arenes that are precursors to 1-phenylalkanes upon hydrogenation. It has been demonstrated that coordination of the 5-FP ligand enhances catalyst longevity compared to unligated Rh(I) catalyst precursors, and the 5-FP-ligated catalyst permits in situ recycling of the Cu(II) oxidant using air. The 5-FP ligand offers a Rh catalyst that can maintain activity for arene alkenylation over at least 2 weeks in reactions at 150 °C that involve multiple Cu(II) regeneration steps using air. Conditions to achieve >13 000 catalytic turnovers with an 8:1 linear:branched (L:B) ratio have been demonstrated. In addition, the catalyst is active under aerobic conditions using air as the sole oxidant. At 80 °C, an 18:1 L:B ratio of alkenyl arenes has been observed, but the reaction rate is substantially reduced compared to 150 °C. Quantum mechanics (QM) calculations compare two predictedmore » reaction pathways with the experimental data, showing that an oxidative addition/reductive elimination pathway is energetically favored over a pathway that involves C–H activation by concerted metalation–deprotonation. In addition, our QM computations are consistent with the observed selectivity (11:1) for linear alkenyl arene products.« less

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [2];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Virginia, Charlottesville, VA (United States)
  2. California Inst. of Technology (CalTech), Pasadena, CA (United States)
Publication Date:
Research Org.:
Univ. of Virginia, Charlottesville, VA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division; National Science Foundation (NSF)
OSTI Identifier:
1596588
Grant/Contract Number:  
SC0000776; CBET-15127509; ACI-1053575
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 49; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Catalysts; Atmospheric chemistry; Hydrocarbons; Aromatic compounds; Alkyls

Citation Formats

Chen, Junqi, Nielsen, Robert J., Goddard, William A., McKeown, Bradley A., Dickie, Diane A., and Gunnoe, T. Brent. Catalytic Synthesis of Superlinear Alkenyl Arenes Using a Rh(I) Catalyst Supported by a “Capping Arene” Ligand: Access to Aerobic Catalysis. United States: N. p., 2018. Web. doi:10.1021/jacs.8b07728.
Chen, Junqi, Nielsen, Robert J., Goddard, William A., McKeown, Bradley A., Dickie, Diane A., & Gunnoe, T. Brent. Catalytic Synthesis of Superlinear Alkenyl Arenes Using a Rh(I) Catalyst Supported by a “Capping Arene” Ligand: Access to Aerobic Catalysis. United States. https://doi.org/10.1021/jacs.8b07728
Chen, Junqi, Nielsen, Robert J., Goddard, William A., McKeown, Bradley A., Dickie, Diane A., and Gunnoe, T. Brent. Thu . "Catalytic Synthesis of Superlinear Alkenyl Arenes Using a Rh(I) Catalyst Supported by a “Capping Arene” Ligand: Access to Aerobic Catalysis". United States. https://doi.org/10.1021/jacs.8b07728. https://www.osti.gov/servlets/purl/1596588.
@article{osti_1596588,
title = {Catalytic Synthesis of Superlinear Alkenyl Arenes Using a Rh(I) Catalyst Supported by a “Capping Arene” Ligand: Access to Aerobic Catalysis},
author = {Chen, Junqi and Nielsen, Robert J. and Goddard, William A. and McKeown, Bradley A. and Dickie, Diane A. and Gunnoe, T. Brent},
abstractNote = {Alkyl and alkenyl arenes are used in a wide range of products. Yet, the synthesis of 1-phenylalkanes or their alkenyl variants from arenes and alkenes is not accessible with current commercial acid-based catalytic processes. Here, it is reported that an air-stable Rh(I) complex, (5-FP)Rh(TFA)(η2-C2H4) (5-FP = 1,2-bis(N-7-azaindolyl)benzene; TFA = trifluoroacetate), serves as a catalyst precursor for the oxidative conversion of arenes and alkenes to alkenyl arenes that are precursors to 1-phenylalkanes upon hydrogenation. It has been demonstrated that coordination of the 5-FP ligand enhances catalyst longevity compared to unligated Rh(I) catalyst precursors, and the 5-FP-ligated catalyst permits in situ recycling of the Cu(II) oxidant using air. The 5-FP ligand offers a Rh catalyst that can maintain activity for arene alkenylation over at least 2 weeks in reactions at 150 °C that involve multiple Cu(II) regeneration steps using air. Conditions to achieve >13 000 catalytic turnovers with an 8:1 linear:branched (L:B) ratio have been demonstrated. In addition, the catalyst is active under aerobic conditions using air as the sole oxidant. At 80 °C, an 18:1 L:B ratio of alkenyl arenes has been observed, but the reaction rate is substantially reduced compared to 150 °C. Quantum mechanics (QM) calculations compare two predicted reaction pathways with the experimental data, showing that an oxidative addition/reductive elimination pathway is energetically favored over a pathway that involves C–H activation by concerted metalation–deprotonation. In addition, our QM computations are consistent with the observed selectivity (11:1) for linear alkenyl arene products.},
doi = {10.1021/jacs.8b07728},
journal = {Journal of the American Chemical Society},
number = 49,
volume = 140,
place = {United States},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Production of linear alkylbenzenes
journal, November 2001


Recent advances in the industrial alkylation of aromatics: new catalysts and new processes
journal, April 2002


Ethylbenzene synthesis and benzene transalkylation with diethylbenzenes on zeolite catalysts
journal, January 2011


Acid-Catalyzed Synthesis of Mono- and Dialkyl Benzenes over Zeolites: Active Sites, Zeolite Topology, and Reaction Mechanisms
journal, August 2002

  • Čejka, Jiří; Wichterlová, Blanka
  • Catalysis Reviews, Vol. 44, Issue 3
  • DOI: 10.1081/CR-120005741

Combining alkylation and transalkylation for alkylaromatic production
journal, January 2004

  • Perego, Carlo; Ingallina, Patrizia
  • Green Chemistry, Vol. 6, Issue 6
  • DOI: 10.1039/b403277m

Linear alkylbenzene
journal, July 1994

  • de Almeida, J. L. G.; Dufaux, M.; Taarit, Y. Ben
  • Journal of the American Oil Chemists’ Society, Vol. 71, Issue 7
  • DOI: 10.1007/BF02541423

Anti-Markovnikov Olefin Arylation Catalyzed by an Iridium Complex
journal, August 2000

  • Matsumoto, Takaya; Taube, Douglas J.; Periana, Roy A.
  • Journal of the American Chemical Society, Vol. 122, Issue 30
  • DOI: 10.1021/ja0009830

Transition metal catalyzed hydroarylation of olefins using unactivated substrates: Recent developments and challenges
journal, January 2011


Mechanism of Homogeneous Ir(III) Catalyzed Regioselective Arylation of Olefins
journal, January 2004

  • Oxgaard, Jonas; Muller, Richard P.; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 126, Issue 1
  • DOI: 10.1021/ja034126i

Novel bis-acac-O,O–Ir( iii ) catalyst for anti-Markovnikov, hydroarylation of olefins operates by arene CH activation
journal, January 2002

  • Periana, Roy A.; Liu, Xiang Y.; Bhalla, Gaurav
  • Chem. Commun., Issue 24
  • DOI: 10.1039/B208680H

Anti-Markovnikov Hydroarylation of Unactivated Olefins Catalyzed by a Bis-tropolonato Iridium(III) Organometallic Complex
journal, June 2005

  • Bhalla, Gaurav; Oxgaard, Jonas; Goddard, William A.
  • Organometallics, Vol. 24, Issue 13
  • DOI: 10.1021/om0501733

Mechanistic Analysis of Hydroarylation Catalysts
journal, September 2004

  • Oxgaard, Jonas; Periana, Roy A.; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 126, Issue 37
  • DOI: 10.1021/ja048841j

Mechanism of efficient anti-Markovnikov olefin hydroarylation catalyzed by homogeneous Ir( iii ) complexes
journal, January 2011

  • Bhalla, Gaurav; Bischof, Steven M.; Ganesh, Somesh K.
  • Green Chem., Vol. 13, Issue 1
  • DOI: 10.1039/C0GC00330A

Control of Olefin Hydroarylation Catalysis via a Sterically and Electronically Flexible Platinum(II) Catalyst Scaffold
journal, June 2013

  • McKeown, Bradley A.; Gonzalez, Hector Emanuel; Michaelos, Thoe
  • Organometallics, Vol. 32, Issue 14
  • DOI: 10.1021/om400390e

Hydrophenylation of ethylene using a cationic Ru( ii ) catalyst: comparison to a neutral Ru( ii ) catalyst
journal, January 2014

  • Burgess, Samantha A.; Joslin, Evan E.; Gunnoe, T. Brent
  • Chem. Sci., Vol. 5, Issue 11
  • DOI: 10.1039/C4SC01665C

Mechanistic Studies of Ethylene Hydrophenylation Catalyzed by Bipyridyl Pt(II) Complexes
journal, November 2011

  • McKeown, Bradley A.; Gonzalez, Hector Emanuel; Friedfeld, Max R.
  • Journal of the American Chemical Society, Vol. 133, Issue 47
  • DOI: 10.1021/ja206064v

Pt II -Catalyzed Ethylene Hydrophenylation: Influence of Dipyridyl Chelate Ring Size on Catalyst Activity and Longevity
journal, April 2013

  • McKeown, Bradley A.; Gonzalez, Hector Emanuel; Gunnoe, T. Brent
  • ACS Catalysis, Vol. 3, Issue 6
  • DOI: 10.1021/cs400231f

Aromatic C−H Activation and Catalytic Hydrophenylation of Ethylene by TpRu{P(OCH 2 ) 3 CEt}(NCMe)Ph
journal, July 2008

  • Foley, Nicholas A.; Ke, Zhuofeng; Gunnoe, T. Brent
  • Organometallics, Vol. 27, Issue 13
  • DOI: 10.1021/om800275b

Platinum(II)-Catalyzed Ethylene Hydrophenylation: Switching Selectivity between Alkyl- and Vinylbenzene Production
journal, April 2013

  • McKeown, Bradley A.; Gonzalez, H. Emanuel; Friedfeld, Max R.
  • Organometallics, Vol. 32, Issue 9
  • DOI: 10.1021/om400306w

Addition of Arenes to Ethylene and Propene Catalyzed by Ruthenium
journal, June 2003

  • Lail, Marty; Arrowood, Benjamin N.; Gunnoe, T. Brent
  • Journal of the American Chemical Society, Vol. 125, Issue 25
  • DOI: 10.1021/ja035076k

Experimental and Computational Studies of Ruthenium(II)-Catalyzed Addition of Arene C−H Bonds to Olefins
journal, October 2004

  • Lail, Marty; Bell, Christen M.; Conner, David
  • Organometallics, Vol. 23, Issue 21
  • DOI: 10.1021/om049404g

Intermolecular Hydroarylation of Unactivated Olefins Catalyzed by Homogeneous Platinum Complexes
journal, September 2008

  • Luedtke, Avery T.; Goldberg, Karen I.
  • Angewandte Chemie International Edition, Vol. 47, Issue 40
  • DOI: 10.1002/anie.200800524

Platinum(II) Olefin Hydroarylation Catalysts: Tuning Selectivity for the anti-Markovnikov Product
journal, November 2014

  • Clement, Marie L.; Grice, Kyle A.; Luedtke, Avery T.
  • Chemistry - A European Journal, Vol. 20, Issue 52
  • DOI: 10.1002/chem.201405174

Hydroarylation of Unactivated Olefins Catalyzed by Platinum(II) Complexes
journal, August 2008

  • McKeown, Bradley A.; Foley, Nicholas A.; Lee, John P.
  • Organometallics, Vol. 27, Issue 16
  • DOI: 10.1021/om8006008

Pt II -Catalyzed Hydrophenylation of α-Olefins: Variation of Linear/Branched Products as a Function of Ligand Donor Ability
journal, April 2014

  • McKeown, Bradley A.; Prince, Bruce M.; Ramiro, Zoraida
  • ACS Catalysis, Vol. 4, Issue 5
  • DOI: 10.1021/cs400988w

Linear-Selective Hydroarylation of Unactivated Terminal and Internal Olefins with Trifluoromethyl-Substituted Arenes
journal, September 2014

  • Bair, Joseph S.; Schramm, York; Sergeev, Alexey G.
  • Journal of the American Chemical Society, Vol. 136, Issue 38
  • DOI: 10.1021/ja505579f

Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes
journal, December 2010

  • Ahuja, Ritu; Punji, Benudhar; Findlater, Michael
  • Nature Chemistry, Vol. 3, Issue 2
  • DOI: 10.1038/nchem.946

Catalytic Synthesis of n -Alkyl Arenes through Alkyl Group Cross-Metathesis
journal, August 2013

  • Dobereiner, Graham E.; Yuan, Jian; Schrock, Richard R.
  • Journal of the American Chemical Society, Vol. 135, Issue 34
  • DOI: 10.1021/ja4066392

Regioselective alkylation of 2-phenylpyridines with terminal alkenes via C–H bond activation by a rhodium catalyst
journal, January 1996

  • Lim, Yeong-Gweon; Kang, Jung-Bu; Kim, Yong Hae
  • J. Chem. Soc., Perkin Trans. 1, Issue 17
  • DOI: 10.1039/P19960002201

A rhodium catalyst for single-step styrene production from benzene and ethylene
journal, April 2015

  • Vaughan, B. A.; Webster-Gardiner, M. S.; Cundari, T. R.
  • Science, Vol. 348, Issue 6233
  • DOI: 10.1126/science.aaa2260

Mechanistic Studies of Single-Step Styrene Production Using a Rhodium(I) Catalyst
journal, January 2017

  • Vaughan, Benjamin A.; Khani, Sarah K.; Gary, J. Brannon
  • Journal of the American Chemical Society, Vol. 139, Issue 4
  • DOI: 10.1021/jacs.6b10658

Catalytic Synthesis of “Super” Linear Alkenyl Arenes Using an Easily Prepared Rh(I) Catalyst
journal, April 2017

  • Webster-Gardiner, Michael S.; Chen, Junqi; Vaughan, Benjamin A.
  • Journal of the American Chemical Society, Vol. 139, Issue 15
  • DOI: 10.1021/jacs.7b01165

Acetaldehyde from Ethylene-A Retrospective on the Discovery of the Wacker Process
journal, October 2009


The Oxidation of Olefins with Palladium Chloride Catalysts
journal, February 1962

  • Smidt, Juergen; Hafner, W.; Jira, R.
  • Angewandte Chemie International Edition in English, Vol. 1, Issue 2
  • DOI: 10.1002/anie.196200801

Über die Reaktionen von Olefinen mit wäßrigen Lösungen von Palladiumsalzen
journal, July 1962


Rhodium Complexes Promoting C−O Bond Formation in Reactions with Oxygen: The Role of Superoxo Species
journal, March 2017

  • Vilella-Arribas, Laia; García-Melchor, Max; Balcells, David
  • Chemistry - A European Journal, Vol. 23, Issue 22
  • DOI: 10.1002/chem.201605959

Rhodium-Mediated Formation of Peroxides from Dioxygen: Isolation of Hydroperoxo, Silylperoxo, and Methylperoxo Intermediates
journal, October 2005

  • Ahijado, Marcel; Braun, Thomas; Noveski, Daniel
  • Angewandte Chemie International Edition, Vol. 44, Issue 42
  • DOI: 10.1002/anie.200501615

N -Heterocyclic Carbene Complexes of Rh:  Reaction with Dioxygen without Oxidation
journal, March 2008

  • Praetorius, Jeremy M.; Allen, Daryl P.; Wang, Ruiyao
  • Journal of the American Chemical Society, Vol. 130, Issue 12
  • DOI: 10.1021/ja7108213

Rhodium Bis(quinolinyl)benzene Complexes for Methane Activation and Functionalization
journal, November 2014

  • Fu, Ross; O'Reilly, Matthew E.; Nielsen, Robert J.
  • Chemistry - A European Journal, Vol. 21, Issue 3
  • DOI: 10.1002/chem.201405460

Long-Range C–H Bond Activation by Rh III -Carboxylates
journal, October 2014

  • O’Reilly, Matthew E.; Fu, Ross; Nielsen, Robert J.
  • Journal of the American Chemical Society, Vol. 136, Issue 42
  • DOI: 10.1021/ja508367m

Transition-Metal-Mediated Nucleophilic Aromatic Substitution with Acids
journal, June 2016


Regioselective C−H Activation of Toluene with a 1,2-Bis( N- 7-azaindolyl)benzene Platinum(II) Complex
journal, June 2005

  • Zhao, Shu-Bin; Song, Datong; Jia, Wen-Li
  • Organometallics, Vol. 24, Issue 13
  • DOI: 10.1021/om050133z

Olefin Rotation in the Solid State: A 13C, 1H, and 2H NMR Study of Rh(acac)(C2H4)2
journal, August 1994

  • Vierkoetter, Stephanie A.; Barnes, Craig E.; Garner, Greta L.
  • Journal of the American Chemical Society, Vol. 116, Issue 16
  • DOI: 10.1021/ja00095a073

Rhodium Phosphine−π-Arene Intermediates in the Hydroamination of Alkenes
journal, March 2011

  • Liu, Zhijian; Yamamichi, Hideaki; Madrahimov, Sherzod T.
  • Journal of the American Chemical Society, Vol. 133, Issue 8
  • DOI: 10.1021/ja1057949

Crystal structure of (C5H5)Rh(C2F4) (C2H4). Comparison of rhodium-ethylene and rhodium-tetrafluoroethylene bonding
journal, May 1972

  • Guggenberger, Lloyd J.; Cramer, Richard
  • Journal of the American Chemical Society, Vol. 94, Issue 11
  • DOI: 10.1021/ja00766a019

X-ray crystal structure and molecular dynamics of (indenyl)bis(ethylene)rhodium(I): 500-MHz NMR spectra and EHMO calculations
journal, August 1986

  • Mlekuz, Michael.; Bougeard, Peter.; Sayer, Brian G.
  • Organometallics, Vol. 5, Issue 8
  • DOI: 10.1021/om00139a024

Olefin Coordination Compounds of Rhodium: The Barrier to Rotation of Coordinated Ethylene and the Mechanism of Olefin Exchange
journal, January 1964

  • Cramer, Richard.
  • Journal of the American Chemical Society, Vol. 86, Issue 2
  • DOI: 10.1021/ja01056a022

Synthesis, Characterization, and Reactivity of Rhodium(I) Acetylacetonato Complexes Containing Pyridinecarboxaldimine Ligands
journal, September 2008

  • Kanas, Diane A.; Geier, Stephen J.; Vogels, Christopher M.
  • Inorganic Chemistry, Vol. 47, Issue 19
  • DOI: 10.1021/ic800703n

Bulky rhodium diimine complexes for the catalyzed borylation of vinylarenes
journal, August 2006

  • Geier, Stephen J.; Chapman, Erin E.; McIsaac, Daniel I.
  • Inorganic Chemistry Communications, Vol. 9, Issue 8
  • DOI: 10.1016/j.inoche.2006.05.001

Steric Control over Arene Coordination toβ-Diiminate Rhodium(I) Fragments
journal, August 2000


Direct Synthesis of Styrene by Rhodium-Catalyzed Oxidative Arylation of Ethylene with Benzene
journal, March 2002

  • Matsumoto, Takaya; Periana, Roy A.; Taube, Douglas J.
  • Journal of Catalysis, Vol. 206, Issue 2
  • DOI: 10.1006/jcat.2001.3471

Oxidative Arylation of Ethylene with Benzene to Produce Styrene
journal, September 2000


Ru-Catalyzed Oxidative Coupling of Arenes with Olefins Using O 2
journal, January 2001

  • Weissman, Haim; Song, Xiaoping; Milstein, David
  • Journal of the American Chemical Society, Vol. 123, Issue 2
  • DOI: 10.1021/ja003361n

Synthesis and Reactivity of Bis(ethene) Rhodium(I) and Iridium(I) Carboxylato Complexes
journal, June 1996

  • Werner, Helmut; Poelsma, Sybo; Schneider, Michael E.
  • Chemische Berichte, Vol. 129, Issue 6
  • DOI: 10.1002/cber.19961290609

Overview of the Mechanistic Work on the Concerted Metallation–Deprotonation Pathway
journal, November 2010


Pd-Mediated Activation of Molecular Oxygen in a Nonpolar Medium
journal, September 2005

  • Keith, Jason M.; Nielsen, Robert J.; Oxgaard, Jonas
  • Journal of the American Chemical Society, Vol. 127, Issue 38
  • DOI: 10.1021/ja043094b

Mechanism of Direct Molecular Oxygen Insertion in a Palladium(II)−Hydride Bond
journal, November 2006

  • Keith, Jason M.; Muller, Richard P.; Kemp, Richard A.
  • Inorganic Chemistry, Vol. 45, Issue 24
  • DOI: 10.1021/ic061392z

Reaction of O 2 with [(−)-Sparteine]Pd(H)Cl: Evidence for an Intramolecular [H–L] + “Reductive Elimination” Pathway
journal, August 2011

  • Decharin, Nattawan; Popp, Brian V.; Stahl, Shannon S.
  • Journal of the American Chemical Society, Vol. 133, Issue 34
  • DOI: 10.1021/ja204989p

Dioxygen insertion into the gold( i )–hydride bond: spin orbit coupling effects in the spotlight for oxidative addition
journal, January 2016

  • Gaggioli, Carlo Alberto; Belpassi, Leonardo; Tarantelli, Francesco
  • Chemical Science, Vol. 7, Issue 12
  • DOI: 10.1039/C6SC02161A

Pd-Mediated Activation of Molecular Oxygen:  Pd(0) versus Direct Insertion
journal, August 2007

  • Keith, Jason M.; Goddard, William A.; Oxgaard, Jonas
  • Journal of the American Chemical Society, Vol. 129, Issue 34
  • DOI: 10.1021/ja070462d

Autoxidation of Platinum(IV) Hydrocarbyl Hydride Complexes To Form Platinum(IV) Hydrocarbyl Hydroperoxide Complexes
journal, February 2009

  • Look, Jennifer L.; Wick, Douglas D.; Mayer, James M.
  • Inorganic Chemistry, Vol. 48, Issue 4
  • DOI: 10.1021/ic801216r

Works referencing / citing this record:

Nickel-catalysed anti-Markovnikov hydroarylation of unactivated alkenes with unactivated arenes facilitated by non-covalent interactions
journal, February 2020