DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014

Abstract

Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO2) and methane (CH4) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO2 and CH4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH4. These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [3];  [5];  [6];  [7];  [3]
  1. Univ. of New Hampshire, Durham, NH (United States); Stockholm Univ. (Sweden)
  2. Stockholm Univ. (Sweden)
  3. Univ. of New Hampshire, Durham, NH (United States)
  4. Rochester Inst. of Technology, NY (United States)
  5. Florida State Univ., Tallahassee, FL (United States)
  6. Tallahassee Community College, FL (United States)
  7. Univ. of Arizona, Tucson, AZ (United States)
Publication Date:
Research Org.:
Univ. of New Hampshire, Durham, NH (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1856519
Grant/Contract Number:  
SC0004632; SC0010580; SC0016440
Resource Type:
Accepted Manuscript
Journal Name:
Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences
Additional Journal Information:
Journal Volume: 380; Journal Issue: 2215; Journal ID: ISSN 1364-503X
Publisher:
The Royal Society Publishing
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Varner, Ruth K., Crill, Patrick M., Frolking, Steve, McCalley, Carmody K., Burke, Sophia A., Chanton, Jeffrey P., Holmes, M. Elizabeth, Saleska, Scott, and Palace, Michael W. Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014. United States: N. p., 2021. Web. doi:10.1098/rsta.2021.0022.
Varner, Ruth K., Crill, Patrick M., Frolking, Steve, McCalley, Carmody K., Burke, Sophia A., Chanton, Jeffrey P., Holmes, M. Elizabeth, Saleska, Scott, & Palace, Michael W. Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014. United States. https://doi.org/10.1098/rsta.2021.0022
Varner, Ruth K., Crill, Patrick M., Frolking, Steve, McCalley, Carmody K., Burke, Sophia A., Chanton, Jeffrey P., Holmes, M. Elizabeth, Saleska, Scott, and Palace, Michael W. Mon . "Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014". United States. https://doi.org/10.1098/rsta.2021.0022. https://www.osti.gov/servlets/purl/1856519.
@article{osti_1856519,
title = {Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014},
author = {Varner, Ruth K. and Crill, Patrick M. and Frolking, Steve and McCalley, Carmody K. and Burke, Sophia A. and Chanton, Jeffrey P. and Holmes, M. Elizabeth and Saleska, Scott and Palace, Michael W.},
abstractNote = {Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO2) and methane (CH4) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO2 and CH4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH4. These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales.},
doi = {10.1098/rsta.2021.0022},
journal = {Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences},
number = 2215,
volume = 380,
place = {United States},
year = {Mon Dec 06 00:00:00 EST 2021},
month = {Mon Dec 06 00:00:00 EST 2021}
}

Works referenced in this record:

Thawing sub-arctic permafrost: Effects on vegetation and methane emissions
journal, January 2004


The urgency of Arctic change
journal, September 2019


Accelerated thawing of subarctic peatland permafrost over the last 50 years
journal, January 2004


Effect of permafrost thaw on CO 2 and CH 4 exchange in a western Alaska peatland chronosequence
journal, August 2014

  • Johnston, Carmel E.; Ewing, Stephanie A.; Harden, Jennifer W.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085004

The Effects of Permafrost Thaw on Soil Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland
journal, November 2011

  • O’Donnell, Jonathan A.; Jorgenson, M. Torre; Harden, Jennifer W.
  • Ecosystems, Vol. 15, Issue 2
  • DOI: 10.1007/s10021-011-9504-0

Future vegetation changes in thawing subarctic mires and implications for greenhouse gas exchange—a regional assessment
journal, March 2012


The Bog Landforms of Continental Western Canada in Relation to Climate and Permafrost Patterns
journal, February 1994

  • Vitt, Dale H.; Halsey, Linda A.; Zoltai, Stephen C.
  • Arctic and Alpine Research, Vol. 26, Issue 1
  • DOI: 10.2307/1551870

UAV photogrammetry for mapping vegetation in the low-Arctic
journal, September 2016

  • Fraser, Robert H.; Olthof, Ian; Lantz, Trevor C.
  • Arctic Science, Vol. 2, Issue 3
  • DOI: 10.1139/as-2016-0008

Determining Subarctic Peatland Vegetation Using an Unmanned Aerial System (UAS)
journal, September 2018

  • Palace, Michael; Herrick, Christina; DelGreco, Jessica
  • Remote Sensing, Vol. 10, Issue 9
  • DOI: 10.3390/rs10091498

Detecting northern peatland vegetation patterns at ultra‐high spatial resolution
journal, December 2019

  • Räsänen, Aleksi; Aurela, Mika; Juutinen, Sari
  • Remote Sensing in Ecology and Conservation, Vol. 6, Issue 4
  • DOI: 10.1002/rse2.140

Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges
journal, November 2016

  • Bartsch, Annett; Höfler, Angelika; Kroisleitner, Christine
  • Remote Sensing, Vol. 8, Issue 12
  • DOI: 10.3390/rs8120979

Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather
journal, December 2019


Carbon dioxide and methane dynamics in a sub-Arctic peatland in northern Finland
journal, January 2002


Acknowledging the spatial heterogeneity in modelling/reconstructing carbon dioxide exchange in a northern aapa mire
journal, October 2009


Biosphere/atmosphere CO 2 exchange in tundra ecosystems: Community characteristics and relationships with multispectral surface reflectance
journal, January 1992

  • Whiting, Gary J.; Bartlett, David S.; Fan, Songmiao
  • Journal of Geophysical Research, Vol. 97, Issue D15
  • DOI: 10.1029/91JD01027

Turbulence in a small boreal lake: Consequences for air–water gas exchange
journal, November 2020

  • MacIntyre, Sally; Bastviken, David; Arneborg, Lars
  • Limnology and Oceanography, Vol. 66, Issue 3
  • DOI: 10.1002/lno.11645

Long‐Term Measurements of Methane Ebullition From Thaw Ponds
journal, July 2019

  • Burke, S. A.; Wik, M.; Lang, A.
  • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 7
  • DOI: 10.1029/2018JG004786

Multiyear measurements of ebullitive methane flux from three subarctic lakes: METHANE EBULLITION FROM SUBARCTIC LAKES
journal, July 2013

  • Wik, Martin; Crill, Patrick M.; Varner, Ruth K.
  • Journal of Geophysical Research: Biogeosciences, Vol. 118, Issue 3
  • DOI: 10.1002/jgrg.20103

Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions
journal, May 2007


Spatially varying peatland initiation, Holocene development, carbon accumulation patterns and radiative forcing within a subarctic fen
journal, November 2020


Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw
journal, August 2020

  • Hugelius, Gustaf; Loisel, Julie; Chadburn, Sarah
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 34
  • DOI: 10.1073/pnas.1916387117

A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts: CHANGING CLIMATE IN THE SUB-ARCTIC
journal, July 2010

  • Callaghan, Terry V.; Bergholm, Fredrik; Christensen, Torben R.
  • Geophysical Research Letters, Vol. 37, Issue 14
  • DOI: 10.1029/2009GL042064

Thawing permafrost and thicker active layers in sub-arctic Sweden
journal, July 2008

  • Åkerman, H. Jonas; Johansson, Margareta
  • Permafrost and Periglacial Processes, Vol. 19, Issue 3
  • DOI: 10.1002/ppp.626

Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing
journal, December 2006


In situ Methane Production from Acid Peat in Plant Communities with Different Moisture Regimes in a Subarctic Mire
journal, December 1984

  • Svensson, Bo H.; Rosswall, Thomas
  • Oikos, Vol. 43, Issue 3
  • DOI: 10.2307/3544151

Emissions from thaw ponds largely offset the carbon sink of northern permafrost wetlands
journal, June 2018


Climate‐Sensitive Controls on Large Spring Emissions of CH 4 and CO 2 From Northern Lakes
journal, July 2019

  • Jansen, J.; Thornton, B. F.; Jammet, M. M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 7
  • DOI: 10.1029/2019JG005094

Effect of a lowered water table on nitrous oxide fluxes from northern peatlands
journal, November 1993

  • Martikainen, Pertti J.; Nykänen, Hannu; Crill, Patrick
  • Nature, Vol. 366, Issue 6450
  • DOI: 10.1038/366051a0

Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex: DOC IN A SUBARCTIC PEATLAND COMPLEX
journal, January 2012

  • Olefeldt, David; Roulet, Nigel T.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G1
  • DOI: 10.1029/2011JG001819

Presence of Eriophorum scheuchzeri enhances substrate availability and methane emission in an Arctic wetland
journal, February 2012


Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
journal, March 2018

  • McGuire, A. David; Lawrence, David M.; Koven, Charles
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719903115

Peatlands in the Earth’s 21st century climate system
journal, December 2011

  • Frolking, Steve; Talbot, Julie; Jones, Miriam C.
  • Environmental Reviews, Vol. 19, Issue NA
  • DOI: 10.1139/a11-014

Widespread global peatland establishment and persistence over the last 130,000 y
journal, February 2019

  • Treat, Claire C.; Kleinen, Thomas; Broothaerts, Nils
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 11
  • DOI: 10.1073/pnas.1813305116

What Determines the Current Presence or Absence of Permafrost in the Torneträsk Region, a Sub-arctic Landscape in Northern Sweden?
journal, June 2006


Large contribution to inland water CO2 and CH4 emissions from very small ponds
journal, February 2016

  • Holgerson, Meredith A.; Raymond, Peter A.
  • Nature Geoscience, Vol. 9, Issue 3
  • DOI: 10.1038/ngeo2654

Climate-sensitive northern lakes and ponds are critical components of methane release
journal, January 2016

  • Wik, Martin; Varner, Ruth K.; Anthony, Katey Walter
  • Nature Geoscience, Vol. 9, Issue 2
  • DOI: 10.1038/ngeo2578

Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes
journal, September 1993


Pressurized ventilation in wetland plants
journal, January 1991


The impact of the permafrost carbon feedback on global climate
journal, August 2014

  • Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085003

Expert assessment of vulnerability of permafrost carbon to climate change
journal, March 2013


Primary production control of methane emission from wetlands
journal, August 1993

  • Whiting, G. J.; Chanton, J. P.
  • Nature, Vol. 364, Issue 6440
  • DOI: 10.1038/364794a0

Circumpolar distribution and carbon storage of thermokarst landscapes
journal, October 2016

  • Olefeldt, D.; Goswami, S.; Grosse, G.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13043

Warming-induced destabilization of peat plateau/thermokarst lake complexes
journal, January 2011

  • Sannel, A. B. K.; Kuhry, P.
  • Journal of Geophysical Research, Vol. 116, Issue G3
  • DOI: 10.1029/2010JG001635

Carbon release through abrupt permafrost thaw
journal, February 2020

  • Turetsky, Merritt R.; Abbott, Benjamin W.; Jones, Miriam C.
  • Nature Geoscience, Vol. 13, Issue 2
  • DOI: 10.1038/s41561-019-0526-0

Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing: Greenhouse Gas Radiative Forcing
journal, December 2016

  • Etminan, M.; Myhre, G.; Highwood, E. J.
  • Geophysical Research Letters, Vol. 43, Issue 24
  • DOI: 10.1002/2016GL071930