DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon Accumulation, Flux, and Fate in Stordalen Mire, a Permafrost Peatland in Transition

Abstract

Abstract Stordalen Mire is a peatland in the discontinuous permafrost zone in arctic Sweden that exhibits a habitat gradient from permafrost palsa, to Sphagnum bog underlain by permafrost, to Eriophorum ‐dominated fully thawed fen. We used three independent approaches to evaluate the annual, multi‐decadal, and millennial apparent carbon accumulation rates (aCAR) across this gradient: seven years of direct semi‐continuous measurement of CO 2 and CH 4 exchange, and 21 core profiles for 210 Pb and 14 C peat dating. Year‐round chamber measurements indicated net carbon balance of −13 ± 8, −49 ± 15, and −91 ± 43 g C m −2  y −1 for the years 2012–2018 in palsa, bog, and fen, respectively. Methane emission offset 2%, 7%, and 17% of the CO 2 uptake rate across this gradient. Recent aCAR indicates higher C accumulation rates in surface peats in the palsa and bog compared to current CO 2 fluxes, but these assessments are more similar in the fen. aCAR increased from low millennial‐scale levels (17–29 g C m −2  y −1 ) to moderate aCAR of the past century (72–81 g C m −2  y −1 ) to higher recent aCAR of 90–147 g C m −2  y −1 . Recent permafrost collapse, greater inundation and vegetation response hasmore » made the landscape a stronger CO 2 sink, but this CO 2 sink is increasingly offset by rising CH 4 emissions, dominated by modern carbon as determined by 14 C. The higher CH 4 emissions result in higher net CO 2‐equivalent emissions, indicating that radiative forcing of this mire and similar permafrost ecosystems will exert a warming influence on future climate.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [3];  [5]; ORCiD logo [6]; ORCiD logo [6]; ORCiD logo [5]; ORCiD logo [7]; ; ;  [8];  [9]; ORCiD logo [10]; ORCiD logo [3]
  1. Department of Earth, Ocean, and Atmospheric Science Florida State University Tallahassee FL USA, Now at Science and Math Division Tallahassee Community College Tallahassee FL USA
  2. Department of Geological Sciences and Bolin Centre for Climate Research Stockholm University Stockholm Sweden
  3. Department of Earth, Ocean, and Atmospheric Science Florida State University Tallahassee FL USA
  4. Thomas H. Gosnell School of Life Sciences Rochester Institute of Technology Rochester NY USA
  5. Earth Systems Research Center Institute for the Study of Earth, Oceans and Space and Department of Earth Sciences University of New Hampshire Durham NH USA
  6. Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory Berkeley CA USA
  7. Department of Microbiology The Ohio State University Columbus OH USA
  8. Woods Hole Oceanographic Institution Woods Hole MA USA
  9. Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
  10. Department of Microbiology The Ohio State University Columbus OH USA, Department of Soil, Water and Environmental Sciences University of Arizona Tucson AZ USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1842354
Grant/Contract Number:  
DE‐SC0004632; DE‐SC0010580
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Global Biogeochemical Cycles
Additional Journal Information:
Journal Name: Global Biogeochemical Cycles Journal Volume: 36 Journal Issue: 1; Journal ID: ISSN 0886-6236
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English

Citation Formats

Holmes, M. E., Crill, P. M., Burnett, W. C., McCalley, C. K., Wilson, R. M., Frolking, S., Chang, K. ‐Y., Riley, W. J., Varner, R. K., Hodgkins, S. B., IsoGenie Project Coordinators, IsoGenie Field Team, McNichol, A. P., Saleska, S. R., Rich, V. I., and Chanton, J. P. Carbon Accumulation, Flux, and Fate in Stordalen Mire, a Permafrost Peatland in Transition. United States: N. p., 2022. Web. doi:10.1029/2021GB007113.
Holmes, M. E., Crill, P. M., Burnett, W. C., McCalley, C. K., Wilson, R. M., Frolking, S., Chang, K. ‐Y., Riley, W. J., Varner, R. K., Hodgkins, S. B., IsoGenie Project Coordinators, IsoGenie Field Team, McNichol, A. P., Saleska, S. R., Rich, V. I., & Chanton, J. P. Carbon Accumulation, Flux, and Fate in Stordalen Mire, a Permafrost Peatland in Transition. United States. https://doi.org/10.1029/2021GB007113
Holmes, M. E., Crill, P. M., Burnett, W. C., McCalley, C. K., Wilson, R. M., Frolking, S., Chang, K. ‐Y., Riley, W. J., Varner, R. K., Hodgkins, S. B., IsoGenie Project Coordinators, IsoGenie Field Team, McNichol, A. P., Saleska, S. R., Rich, V. I., and Chanton, J. P. Fri . "Carbon Accumulation, Flux, and Fate in Stordalen Mire, a Permafrost Peatland in Transition". United States. https://doi.org/10.1029/2021GB007113.
@article{osti_1842354,
title = {Carbon Accumulation, Flux, and Fate in Stordalen Mire, a Permafrost Peatland in Transition},
author = {Holmes, M. E. and Crill, P. M. and Burnett, W. C. and McCalley, C. K. and Wilson, R. M. and Frolking, S. and Chang, K. ‐Y. and Riley, W. J. and Varner, R. K. and Hodgkins, S. B. and IsoGenie Project Coordinators and IsoGenie Field Team and McNichol, A. P. and Saleska, S. R. and Rich, V. I. and Chanton, J. P.},
abstractNote = {Abstract Stordalen Mire is a peatland in the discontinuous permafrost zone in arctic Sweden that exhibits a habitat gradient from permafrost palsa, to Sphagnum bog underlain by permafrost, to Eriophorum ‐dominated fully thawed fen. We used three independent approaches to evaluate the annual, multi‐decadal, and millennial apparent carbon accumulation rates (aCAR) across this gradient: seven years of direct semi‐continuous measurement of CO 2 and CH 4 exchange, and 21 core profiles for 210 Pb and 14 C peat dating. Year‐round chamber measurements indicated net carbon balance of −13 ± 8, −49 ± 15, and −91 ± 43 g C m −2  y −1 for the years 2012–2018 in palsa, bog, and fen, respectively. Methane emission offset 2%, 7%, and 17% of the CO 2 uptake rate across this gradient. Recent aCAR indicates higher C accumulation rates in surface peats in the palsa and bog compared to current CO 2 fluxes, but these assessments are more similar in the fen. aCAR increased from low millennial‐scale levels (17–29 g C m −2  y −1 ) to moderate aCAR of the past century (72–81 g C m −2  y −1 ) to higher recent aCAR of 90–147 g C m −2  y −1 . Recent permafrost collapse, greater inundation and vegetation response has made the landscape a stronger CO 2 sink, but this CO 2 sink is increasingly offset by rising CH 4 emissions, dominated by modern carbon as determined by 14 C. The higher CH 4 emissions result in higher net CO 2‐equivalent emissions, indicating that radiative forcing of this mire and similar permafrost ecosystems will exert a warming influence on future climate.},
doi = {10.1029/2021GB007113},
journal = {Global Biogeochemical Cycles},
number = 1,
volume = 36,
place = {United States},
year = {Fri Jan 14 00:00:00 EST 2022},
month = {Fri Jan 14 00:00:00 EST 2022}
}

Works referenced in this record:

Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands
journal, March 2018


Atmospheric Radiocarbon for the Period 1950–2010
journal, January 2013


Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland
journal, February 2007


The ecological significance of organochemical compounds in Sphagnum
journal, June 1997


The Limits to Peat Bog Growth
journal, January 1984

  • Clymo, R. S.
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 303, Issue 1117
  • DOI: 10.1098/rstb.1984.0002

Ecosystem responses to increased precipitation and permafrost decay in subarctic Sweden inferred from peat and lake sediments
journal, July 2009


Long‐term Impacts of Permafrost Thaw on Carbon Storage in Peatlands: Deep Losses Offset by Surficial Accumulation
journal, March 2020

  • Heffernan, Liam; Estop‐Aragonés, Cristian; Knorr, Klaus‐Holger
  • Journal of Geophysical Research: Biogeosciences, Vol. 125, Issue 3
  • DOI: 10.1029/2019JG005501

Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex: DOC IN A SUBARCTIC PEATLAND COMPLEX
journal, January 2012

  • Olefeldt, David; Roulet, Nigel T.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G1
  • DOI: 10.1029/2011JG001819

A 2200-Year Record of Permafrost Dynamics and Carbon Cycling in a Collapse-Scar Bog, Interior Alaska
journal, September 2012


Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
journal, March 2018

  • McGuire, A. David; Lawrence, David M.; Koven, Charles
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719903115

Permafrost carbon: Stock and decomposability of a globally significant carbon pool
journal, January 2006

  • Zimov, S. A.; Davydov, S. P.; Zimova, G. M.
  • Geophysical Research Letters, Vol. 33, Issue 20
  • DOI: 10.1029/2006GL027484

A new climate era in the sub-Arctic: Accelerating climate changes and multiple impacts: CHANGING CLIMATE IN THE SUB-ARCTIC
journal, July 2010

  • Callaghan, Terry V.; Bergholm, Fredrik; Christensen, Torben R.
  • Geophysical Research Letters, Vol. 37, Issue 14
  • DOI: 10.1029/2009GL042064

Non-methane volatile organic compound flux from a subarctic mire in Northern Sweden
journal, January 2008

  • Bäckstrand, Kristina; Crill, Patrick M.; Mastepanov, Mikhail
  • Tellus B: Chemical and Physical Meteorology, Vol. 60, Issue 2
  • DOI: 10.1111/j.1600-0889.2007.00331.x

Stability of peatland carbon to rising temperatures
journal, December 2016

  • Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.
  • Nature Communications, Vol. 7, Article No. 13723
  • DOI: 10.1038/ncomms13723

Contemporary carbon fluxes do not reflect the long-term carbon balance for an Atlantic blanket bog
journal, June 2017


Surface production fuels deep heterotrophic respiration in northern peatlands: HETEROTROPHIC RESPIRATION IN PEATLANDS
journal, December 2013

  • Elizabeth Corbett, J.; Burdige, David J.; Tfaily, Malak M.
  • Global Biogeochemical Cycles, Vol. 27, Issue 4
  • DOI: 10.1002/2013GB004677

Surface abrasion of palsas by wind action in Finnish Lapland
journal, May 2003


Significant contribution to climate warming from the permafrost carbon feedback
journal, September 2012

  • MacDougall, Andrew H.; Avis, Christopher A.; Weaver, Andrew J.
  • Nature Geoscience, Vol. 5, Issue 10
  • DOI: 10.1038/ngeo1573

Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands
journal, October 2016

  • Jones, Miriam C.; Harden, Jennifer; O'Donnell, Jonathan
  • Global Change Biology, Vol. 23, Issue 3
  • DOI: 10.1111/gcb.13403

Interdecadal Changes in CO 2 and CH 4 Fluxes of a Subarctic Mire: Stordalen Revisited after 20 Years
journal, April 1999

  • Svensson, B. H.; Christensen, T. R.; Johansson, E.
  • Oikos, Vol. 85, Issue 1
  • DOI: 10.2307/3546788

Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity
journal, January 2015

  • Schneider von Deimling, T.; Grosse, G.; Strauss, J.
  • Biogeosciences, Vol. 12, Issue 11
  • DOI: 10.5194/bg-12-3469-2015

Influence of Holocene permafrost aggradation and thaw on the paleoecology and carbon storage of a peatland complex in northwestern Canada
journal, February 2017


Carbon release through abrupt permafrost thaw
journal, February 2020

  • Turetsky, Merritt R.; Abbott, Benjamin W.; Jones, Miriam C.
  • Nature Geoscience, Vol. 13, Issue 2
  • DOI: 10.1038/s41561-019-0526-0

Determination of 210Pb in environmental samples
journal, December 2006

  • Ebaid, Y. Y.; Khater, A. E. M.
  • Journal of Radioanalytical and Nuclear Chemistry, Vol. 270, Issue 3
  • DOI: 10.1007/s10967-006-0470-5

CO 2 Fluxes from Peat in Boreal Mires under Varying Temperature and Moisture Conditions
journal, April 1996

  • Silvola, Jouko; Alm, Jukka; Ahlholm, Urpo
  • The Journal of Ecology, Vol. 84, Issue 2
  • DOI: 10.2307/2261357

Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a Review
journal, May 2011


The Effects of Permafrost Thaw on Soil Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland
journal, November 2011

  • O’Donnell, Jonathan A.; Jorgenson, M. Torre; Harden, Jennifer W.
  • Ecosystems, Vol. 15, Issue 2
  • DOI: 10.1007/s10021-011-9504-0

Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production
journal, April 2014

  • Hodgkins, S. B.; Tfaily, M. M.; McCalley, C. K.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 16
  • DOI: 10.1073/pnas.1314641111

Spatial representation of organic carbon and active-layer thickness of high latitude soils in CMIP5 earth system models
journal, August 2017


Modeling Climate Change Impacts on an Arctic Polygonal Tundra: 2. Changes in CO 2 and CH 4 Exchange Depend on Rates of Permafrost Thaw as Affected by Changes in Vegetation and Drainage
journal, May 2019

  • Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.
  • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 5
  • DOI: 10.1029/2018JG004645

Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments
journal, November 2020


A permafrost carbon bomb?
journal, September 2013

  • Treat, Claire C.; Frolking, Steve
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate2010

Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils: Permafrost Effects on Peat Properties
journal, January 2016

  • Treat, C. C.; Jones, M. C.; Camill, P.
  • Journal of Geophysical Research: Biogeosciences, Vol. 121, Issue 1
  • DOI: 10.1002/2015JG003061

The determination of low levels of polonium-210 in environmental materials
journal, January 1968


Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
journal, November 2012

  • Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.
  • Global Change Biology, Vol. 19, Issue 2
  • DOI: 10.1111/gcb.12071

The impact of the permafrost carbon feedback on global climate
journal, August 2014

  • Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085003

Northern peatland carbon stocks and dynamics: a review
journal, January 2012


The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP)
journal, August 2020

  • Reimer, Paula J.; Austin, William E. N.; Bard, Edouard
  • Radiocarbon, Vol. 62, Issue 4
  • DOI: 10.1017/RDC.2020.41

The disappearance of relict permafrost in boreal north America: Effects on peatland carbon storage and fluxes
journal, September 2007


Expert assessment of vulnerability of permafrost carbon to climate change
journal, March 2013


Year-round CH 4 and CO 2 flux dynamics in two contrasting freshwater ecosystems of the subarctic
journal, January 2017

  • Jammet, Mathilde; Dengel, Sigrid; Kettner, Ernesto
  • Biogeosciences, Vol. 14, Issue 22
  • DOI: 10.5194/bg-14-5189-2017

Monitoring the Multi-Year Carbon Balance of a Subarctic Palsa Mire with Micrometeorological Techniques
journal, July 2012

  • Christensen, Torben R.; Jackowicz-Korczyński, Marcin; Aurela, Mika
  • AMBIO, Vol. 41, Issue S3
  • DOI: 10.1007/s13280-012-0302-5

Primary production control of methane emission from wetlands
journal, August 1993

  • Whiting, G. J.; Chanton, J. P.
  • Nature, Vol. 364, Issue 6440
  • DOI: 10.1038/364794a0

Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years
journal, October 2005


Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost: C Balance of Permafrost Peat
journal, February 2017

  • Wilson, R. M.; Fitzhugh, L.; Whiting, G. J.
  • Journal of Geophysical Research: Biogeosciences, Vol. 122, Issue 2
  • DOI: 10.1002/2016JG003600

Bayesian Analysis of $$^{210}$$ 210 Pb Dating
journal, June 2018

  • Aquino-López, Marco A.; Blaauw, Maarten; Christen, J. Andrés
  • Journal of Agricultural, Biological and Environmental Statistics, Vol. 23, Issue 3
  • DOI: 10.1007/s13253-018-0328-7

Peatland responses to varying interannual moisture conditions as measured by automatic CO 2 chambers : PEATLAND RESPONSES TO INTERANNUAL MOISTURE
journal, June 2003

  • Bubier, Jill; Crill, Patrick; Mosedale, Andrew
  • Global Biogeochemical Cycles, Vol. 17, Issue 2
  • DOI: 10.1029/2002GB001946

Long-term CO2 production following permafrost thaw
journal, July 2013

  • Elberling, Bo; Michelsen, Anders; Schädel, Christina
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate1955

Untargeted metabolomic profiling of Sphagnum fallax reveals novel antimicrobial metabolites
journal, November 2019

  • Fudyma, Jane D.; Lyon, Jamee; AminiTabrizi, Roya
  • Plant Direct, Vol. 3, Issue 11
  • DOI: 10.1002/pld3.179

The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate
journal, September 2011


210 Pb, 137 Cs and 239 Pu Profiles in Ombrotrophic Peat
journal, January 1979

  • Oldfield, F.; Appleby, P. G.; Cambray, R. S.
  • Oikos, Vol. 33, Issue 1
  • DOI: 10.2307/3544509

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Mobility and diagenesis of Pb and 210Pb in peat
journal, December 1990


Environmental correlates of peatland carbon fluxes in a thawing landscape: do transitional thaw stages matter?
journal, January 2015


Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra: WARMING OF ALASKAN TUNDRA
journal, February 2011


A compilation of data on lead 210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces
journal, December 1996

  • Preiss, Nicolas; Mélières, Marie-Antoinette; Pourchet, Michel
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D22
  • DOI: 10.1029/96JD01836

Thawing sub-arctic permafrost: Effects on vegetation and methane emissions
journal, January 2004


Non-growing season plant nutrient uptake controls Arctic tundra vegetation composition under future climate
journal, July 2021

  • Riley, William J.; Mekonnen, Zelalem A.; Tang, Jinyun
  • Environmental Research Letters, Vol. 16, Issue 7
  • DOI: 10.1088/1748-9326/ac0e63

Performance of catalytically condensed carbon for use in accelerator mass spectrometry
journal, November 1984

  • Vogel, J. S.; Southon, J. R.; Nelson, D. E.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 5, Issue 2
  • DOI: 10.1016/0168-583X(84)90529-9

Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing
journal, December 2006


Wetland development, permafrost history and nutrient cycling inferred from late Holocene peat and lake sediment records in subarctic Sweden
journal, February 2010


Thawing permafrost and thicker active layers in sub-arctic Sweden
journal, July 2008

  • Åkerman, H. Jonas; Johansson, Margareta
  • Permafrost and Periglacial Processes, Vol. 19, Issue 3
  • DOI: 10.1002/ppp.626

Limited contribution of permafrost carbon to methane release from thawing peatlands
journal, June 2017

  • Cooper, Mark D. A.; Estop-Aragonés, Cristian; Fisher, James P.
  • Nature Climate Change, Vol. 7, Issue 7
  • DOI: 10.1038/nclimate3328

Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands: CARBON BALANCE OF A SUBARCTIC PEATLAND
journal, February 2012

  • Olefeldt, David; Roulet, Nigel T.; Bergeron, Onil
  • Geophysical Research Letters, Vol. 39, Issue 3
  • DOI: 10.1029/2011GL050355

Elemental composition and optical properties reveal changes in dissolved organic matter along a permafrost thaw chronosequence in a subarctic peatland
journal, August 2016

  • Hodgkins, Suzanne B.; Tfaily, Malak M.; Podgorski, David C.
  • Geochimica et Cosmochimica Acta, Vol. 187
  • DOI: 10.1016/j.gca.2016.05.015

Divergent responses of permafrost peatlands to recent climate change
journal, February 2021

  • Sim, Thomas G.; Swindles, Graeme T.; Morris, Paul J.
  • Environmental Research Letters, Vol. 16, Issue 3
  • DOI: 10.1088/1748-9326/abe00b

Annual carbon gas budget for a subarctic peatland, Northern Sweden
journal, January 2010

  • Bäckstrand, K.; Crill, P. M.; Jackowicz-Korczyñski, M.
  • Biogeosciences, Vol. 7, Issue 1
  • DOI: 10.5194/bg-7-95-2010

Export of organic carbon from peat soils
journal, August 2001

  • Freeman, C.; Evans, C. D.; Monteith, D. T.
  • Nature, Vol. 412, Issue 6849
  • DOI: 10.1038/35090628

Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance
journal, August 2020

  • Olid, Carolina; Klaminder, Jonatan; Monteux, Sylvain
  • Global Change Biology, Vol. 26, Issue 10
  • DOI: 10.1111/gcb.15283

Long‐Term Measurements of Methane Ebullition From Thaw Ponds
journal, July 2019

  • Burke, S. A.; Wik, M.; Lang, A.
  • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 7
  • DOI: 10.1029/2018JG004786

Methane dynamics regulated by microbial community response to permafrost thaw
journal, October 2014

  • McCalley, Carmody K.; Woodcroft, Ben J.; Hodgkins, Suzanne B.
  • Nature, Vol. 514, Issue 7523
  • DOI: 10.1038/nature13798

Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst
journal, August 2018

  • Estop-Aragonés, Cristian; Czimczik, Claudia I.; Heffernan, Liam
  • Environmental Research Letters, Vol. 13, Issue 8
  • DOI: 10.1088/1748-9326/aad5f0

Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels
journal, July 2004


Post-thaw variability in litter decomposition best explained by microtopography at an ice-rich permafrost peatland
journal, January 2018


Biomass and production of two vascular plants in a boreal mesotrophic fen
journal, June 1996

  • Saarinen, Timo
  • Canadian Journal of Botany, Vol. 74, Issue 6
  • DOI: 10.1139/b96-116

Radiocarbon Dating of Modern Peat Profiles: Pre- and Post-Bomb 14 C Variations in the Construction of Age-Depth Models
journal, January 2005


The effects of temperature and nitrogen and sulfur additions on carbon accumulation in a nutrient-poor boreal mire: Decadal effects assessed using 210 Pb peat chronologies
journal, March 2014

  • Olid, Carolina; Nilsson, Mats B.; Eriksson, Tobias
  • Journal of Geophysical Research: Biogeosciences, Vol. 119, Issue 3
  • DOI: 10.1002/2013JG002365

Discussion Reporting of 14 C Data
journal, January 1977


Misinterpreting carbon accumulation rates in records from near-surface peat
journal, November 2019


Rapid Early Development of Circumarctic Peatlands and Atmospheric CH4 and CO2 Variations
journal, October 2006


21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory
journal, May 2018

  • Mekonnen, Zelalem A.; Riley, William J.; Grant, Robert F.
  • Environmental Research Letters, Vol. 13, Issue 5
  • DOI: 10.1088/1748-9326/aabf28

Flexible paleoclimate age-depth models using an autoregressive gamma process
journal, September 2011


Carbon respiration from subsurface peat accelerated by climate warming in the subarctic
journal, July 2009

  • Dorrepaal, Ellen; Toet, Sylvia; van Logtestijn, Richard S. P.
  • Nature, Vol. 460, Issue 7255
  • DOI: 10.1038/nature08216

Soil organic carbon pools in the northern circumpolar permafrost region: SOIL ORGANIC CARBON POOLS
journal, June 2009

  • Tarnocai, C.; Canadell, J. G.; Schuur, E. A. G.
  • Global Biogeochemical Cycles, Vol. 23, Issue 2
  • DOI: 10.1029/2008GB003327