DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved Spatial Resolution Achieved by Chromatic Intensity Interferometry

Abstract

Interferometers are widely used in imaging technologies to achieve enhanced spatial resolution, but require that the incoming photons be indistinguishable. In previous work, we built and analyzed color erasure detectors which expand the scope of intensity interferometry to accommodate sources of different colors. Here we demonstrate experimentally how color erasure detectors can achieve improved spatial resolution in an imaging task, well beyond the diffraction limit. Utilizing two 10.9 mm-aperture telescopes and a 0.8 m baseline, we measure the distance between a 1063.6 nm source and a 1064.4 nm source separated by 4.2 mm at a distance of 1.43 km, which surpasses the diffraction limit of a single telescope by about 40 times. Moreover, chromatic intensity interferometry allows us to recover the phase of the Fourier transform of the imaged objects – a quantity that is, in the presence of modest noise, inaccessible to conventional intensity interferometry.

Authors:
 [1];  [2]; ORCiD logo [1];  [3];  [2];  [4];  [4];  [1]; ORCiD logo [2];  [5];  [1]
  1. Univ. of Science and Technology, Hefei (China); Univ. of Science and Technology, Shanghai (China); Shanghai Research Center for Quantum Sciences (China)
  2. Univ. of Science and Technology, Hefei (China); Univ. of Science and Technology, Shanghai (China); Shanghai Research Center for Quantum Sciences (China); Jinan Institute of Quantum Technology (China)
  3. Harvard Univ., Cambridge, MA (United States)
  4. Jinan Institute of Quantum Technology (China)
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Shanghai Jiao Tong Univ. (China); Stockholm Univ. (Sweden); Arizona State Univ., Tempe, AZ (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Key R&D Program of China, National Natural Science Foundation of China; Chinese Academy of Sciences; Shanghai Municipal Science and Technology Major Project; Anhui Initiative in Quantum Information Technologies; European Research Council (ERC); Swedish Research Council (SRC)
OSTI Identifier:
1851684
Grant/Contract Number:  
SC0012567; 2018YFB0504300; 2019SHZDZX; 335-2014-7424
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 127; Journal Issue: 10; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Liu, Lu-Chuan, Qu, Luo-Yuan, Wu, Cheng, Cotler, Jordan, Ma, Fei, Zheng, Ming-Yang, Xie, Xiu-Ping, Chen, Yu-Ao, Zhang, Qiang, Wilczek, Frank, and Pan, Jian-Wei. Improved Spatial Resolution Achieved by Chromatic Intensity Interferometry. United States: N. p., 2021. Web. doi:10.1103/physrevlett.127.103601.
Liu, Lu-Chuan, Qu, Luo-Yuan, Wu, Cheng, Cotler, Jordan, Ma, Fei, Zheng, Ming-Yang, Xie, Xiu-Ping, Chen, Yu-Ao, Zhang, Qiang, Wilczek, Frank, & Pan, Jian-Wei. Improved Spatial Resolution Achieved by Chromatic Intensity Interferometry. United States. https://doi.org/10.1103/physrevlett.127.103601
Liu, Lu-Chuan, Qu, Luo-Yuan, Wu, Cheng, Cotler, Jordan, Ma, Fei, Zheng, Ming-Yang, Xie, Xiu-Ping, Chen, Yu-Ao, Zhang, Qiang, Wilczek, Frank, and Pan, Jian-Wei. Sun . "Improved Spatial Resolution Achieved by Chromatic Intensity Interferometry". United States. https://doi.org/10.1103/physrevlett.127.103601. https://www.osti.gov/servlets/purl/1851684.
@article{osti_1851684,
title = {Improved Spatial Resolution Achieved by Chromatic Intensity Interferometry},
author = {Liu, Lu-Chuan and Qu, Luo-Yuan and Wu, Cheng and Cotler, Jordan and Ma, Fei and Zheng, Ming-Yang and Xie, Xiu-Ping and Chen, Yu-Ao and Zhang, Qiang and Wilczek, Frank and Pan, Jian-Wei},
abstractNote = {Interferometers are widely used in imaging technologies to achieve enhanced spatial resolution, but require that the incoming photons be indistinguishable. In previous work, we built and analyzed color erasure detectors which expand the scope of intensity interferometry to accommodate sources of different colors. Here we demonstrate experimentally how color erasure detectors can achieve improved spatial resolution in an imaging task, well beyond the diffraction limit. Utilizing two 10.9 mm-aperture telescopes and a 0.8 m baseline, we measure the distance between a 1063.6 nm source and a 1064.4 nm source separated by 4.2 mm at a distance of 1.43 km, which surpasses the diffraction limit of a single telescope by about 40 times. Moreover, chromatic intensity interferometry allows us to recover the phase of the Fourier transform of the imaged objects – a quantity that is, in the presence of modest noise, inaccessible to conventional intensity interferometry.},
doi = {10.1103/physrevlett.127.103601},
journal = {Physical Review Letters},
number = 10,
volume = 127,
place = {United States},
year = {Sun Aug 01 00:00:00 EDT 2021},
month = {Sun Aug 01 00:00:00 EDT 2021}
}

Works referenced in this record:

Spatial quantum noise interferometry in expanding ultracold atom clouds
journal, March 2005

  • Fölling, Simon; Gerbier, Fabrice; Widera, Artur
  • Nature, Vol. 434, Issue 7032
  • DOI: 10.1038/nature03500

The Sydney University Stellar Interferometer -- II. Commissioning observations and results
journal, March 1999


The Fermionic Hanbury Brown and Twiss Experiment
journal, April 1999


Mach-Zehnder interferometer using frequency-domain beamsplitter
journal, January 2017

  • Kobayashi, Toshiki; Yamazaki, Daisuke; Matsuki, Kenichiro
  • Optics Express, Vol. 25, Issue 10
  • DOI: 10.1364/OE.25.012052

High angular resolution imaging with stellar intensity interferometry using air Cherenkov telescope arrays: High angular resolution imaging
journal, October 2011


Frequency-domain Hong–Ou–Mandel interference
journal, April 2016


The Stellar Interferometer at Narrabri Observatory--II: The Angular Diameters of 15 Stars
journal, December 1967

  • Brown, R. H.; Davis, J.; Allen, L. R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 137, Issue 4
  • DOI: 10.1093/mnras/137.4.393

Color Erasure Detectors Enable Chromatic Interferometry
journal, December 2019


Erasing Distinguishability Using Quantum Frequency Up-Conversion
journal, October 2008


Quantum interference and correlation control of frequency-bin qubits
journal, January 2018


Demonstration of stellar intensity interferometry with the four VERITAS telescopes
journal, July 2020


Stellar Intensity Interferometric Capabilities of IACT Arrays
conference, August 2018

  • Kieda, David; Matthews, Nolan
  • Proceedings of 35th International Cosmic Ray Conference — PoS(ICRC2017)
  • DOI: 10.22323/1.301.0828

Interference between independent fluctuating condensates
journal, April 2006

  • Polkovnikov, A.; Altman, E.; Demler, E.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 16
  • DOI: 10.1073/pnas.0510276103

Correlations and Counting Statistics of an Atom Laser
journal, August 2005


A Test of a New Type of Stellar Interferometer on Sirius
journal, November 1956

  • Hanbury Brown, R.; Twiss, R. Q.
  • Nature, Vol. 178, Issue 4541
  • DOI: 10.1038/1781046a0

Hanbury Brown and Twiss Bunching of Phonons and of the Quantum Depletion in an Interacting Bose Gas
journal, October 2020


Experimental simulation of time and frequency transfer via an optical satellite–ground link at 10 -18 instability
journal, January 2021


Quantum optical microcombs
journal, February 2019


Chromatic interferometry with small frequency differences
journal, January 2020

  • Qu, Luo-Yuan; Liu, Lu-Chuan; Cotler, Jordan
  • Optics Express, Vol. 28, Issue 22
  • DOI: 10.1364/OE.402560

Comparison of the Hanbury Brown–Twiss effect for bosons and fermions
journal, January 2007

  • Jeltes, T.; McNamara, J. M.; Hogervorst, W.
  • Nature, Vol. 445, Issue 7126
  • DOI: 10.1038/nature05513

The Question of Correlation between Photons in Coherent Beams of Light
journal, June 1957

  • Twiss, R. Q.; Brown, R. Hanbury
  • Nature, Vol. 179, Issue 4570
  • DOI: 10.1038/1791128a0

Interference of two photons of different color
journal, March 2010


Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength
journal, November 2012

  • De Greve, Kristiaan; Yu, Leo; McMahon, Peter L.
  • Nature, Vol. 491, Issue 7424
  • DOI: 10.1038/nature11577

Ideal n-body correlations with massive particles
journal, May 2013

  • Dall, R. G.; Manning, A. G.; Hodgman, S. S.
  • Nature Physics, Vol. 9, Issue 6
  • DOI: 10.1038/nphys2632

Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing
journal, January 2018


Hanbury Brown Twiss Effect for Ultracold Quantum Gases
journal, October 2005


Quantifying the Bimodal Color‐Magnitude Distribution of Galaxies
journal, January 2004

  • Baldry, Ivan K.; Glazebrook, Karl; Brinkmann, Jon
  • The Astrophysical Journal, Vol. 600, Issue 2
  • DOI: 10.1086/380092