DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal-insulator transition and doping-induced phase change in Ge2Sb2Se5xTe5-5x

Abstract

Ge2Sb2Te5 (GST-225), a phase change material (PCM) with vast differences in the electrical and optical characteristics between its amorphous and crystalline phases, is revisited to explore its properties with Se doping. GST crystallizes in a layered hexagonal ground state, while the precursor to the amorphous state is a distorted rock salt like structure with vacancies at the Ge/Sb sites. Upon doping, liquid nitrogen quenched Ge2Sb2Se5xTe5-5x (GSST-225) exhibits a direct hexagonal-to-amorphous phase change above x > 0.8, whereas the rock salt like structure appears as a second phase with a volume fraction that does not change as a function of the doping. The phase change is accompanied by a metal-to-insulator transition (MIT), with a several orders of magnitude increase in the resistivity on approaching the amorphous state. Additionally, a similar MIT is observed even without the phase change in hexagonal crystals with doping levels above x >0.8. On warming amorphous GSST (x = 0.9) above room temperature, a reversal to the hexagonal phase occurs with a re-crystallization onset temperature (Tc) above 300 °C, much higher than the Tc (~170 °C) of amorphous GST and an activation energy of 1.47 eV, which is comparable to good glass formers.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [1]
  1. University of Virginia, Charlottesville, VA (United States). Dept. of Physics
  2. Department of Emerging Materials Science, DGIST, Daegu (South Korea)
Publication Date:
Research Org.:
Univ. of Virginia, Charlottesville, VA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1849393
Alternate Identifier(s):
OSTI ID: 1712506
Grant/Contract Number:  
FG02-01ER45927
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 117; Journal Issue: 19; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Physics

Citation Formats

Xu, Zhenyang, Park, Keeseong, Schneeloch, John A., and Louca, Despina. Metal-insulator transition and doping-induced phase change in Ge2Sb2Se5xTe5-5x. United States: N. p., 2020. Web. doi:10.1063/5.0030956.
Xu, Zhenyang, Park, Keeseong, Schneeloch, John A., & Louca, Despina. Metal-insulator transition and doping-induced phase change in Ge2Sb2Se5xTe5-5x. United States. https://doi.org/10.1063/5.0030956
Xu, Zhenyang, Park, Keeseong, Schneeloch, John A., and Louca, Despina. Mon . "Metal-insulator transition and doping-induced phase change in Ge2Sb2Se5xTe5-5x". United States. https://doi.org/10.1063/5.0030956. https://www.osti.gov/servlets/purl/1849393.
@article{osti_1849393,
title = {Metal-insulator transition and doping-induced phase change in Ge2Sb2Se5xTe5-5x},
author = {Xu, Zhenyang and Park, Keeseong and Schneeloch, John A. and Louca, Despina},
abstractNote = {Ge2Sb2Te5 (GST-225), a phase change material (PCM) with vast differences in the electrical and optical characteristics between its amorphous and crystalline phases, is revisited to explore its properties with Se doping. GST crystallizes in a layered hexagonal ground state, while the precursor to the amorphous state is a distorted rock salt like structure with vacancies at the Ge/Sb sites. Upon doping, liquid nitrogen quenched Ge2Sb2Se5xTe5-5x (GSST-225) exhibits a direct hexagonal-to-amorphous phase change above x > 0.8, whereas the rock salt like structure appears as a second phase with a volume fraction that does not change as a function of the doping. The phase change is accompanied by a metal-to-insulator transition (MIT), with a several orders of magnitude increase in the resistivity on approaching the amorphous state. Additionally, a similar MIT is observed even without the phase change in hexagonal crystals with doping levels above x >0.8. On warming amorphous GSST (x = 0.9) above room temperature, a reversal to the hexagonal phase occurs with a re-crystallization onset temperature (Tc) above 300 °C, much higher than the Tc (~170 °C) of amorphous GST and an activation energy of 1.47 eV, which is comparable to good glass formers.},
doi = {10.1063/5.0030956},
journal = {Applied Physics Letters},
number = 19,
volume = 117,
place = {United States},
year = {Mon Nov 09 00:00:00 EST 2020},
month = {Mon Nov 09 00:00:00 EST 2020}
}

Works referenced in this record:

Origin, secret, and application of the ideal phase-change material GeSbTe
journal, October 2012


Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory
journal, December 2000

  • Yamada, Noboru; Matsunaga, Toshiyuki
  • Journal of Applied Physics, Vol. 88, Issue 12
  • DOI: 10.1063/1.1314323

Role of vacancies in metal–insulator transitions of crystalline phase-change materials
journal, October 2012

  • Zhang, W.; Thiess, A.; Zalden, P.
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3456

Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements
journal, May 2000

  • Friedrich, I.; Weidenhof, V.; Njoroge, W.
  • Journal of Applied Physics, Vol. 87, Issue 9
  • DOI: 10.1063/1.373041

Phase-change materials for rewriteable data storage
journal, November 2007

  • Wuttig, Matthias; Yamada, Noboru
  • Nature Materials, Vol. 6, Issue 11
  • DOI: 10.1038/nmat2009

Ferroelectric Order Control of the Dirac-Semimetal Phase in GeTe-Sb 2 Te 3 Superlattices
journal, December 2013

  • Tominaga, J.; Kolobov, A. V.; Fons, P.
  • Advanced Materials Interfaces, Vol. 1, Issue 1
  • DOI: 10.1002/admi.201300027

Van der Waals interfacial bonding and intermixing in GeTe-Sb2Te3-based superlattices
journal, February 2018


Model for crystallization kinetics: Deviations from Kolmogorov–Johnson–Mehl–Avrami kinetics
journal, October 1999

  • Castro, Mario; Domı́nguez-Adame, Francisco; Sánchez, Angel
  • Applied Physics Letters, Vol. 75, Issue 15
  • DOI: 10.1063/1.124965

Kinetics of crystallization of Ge30-xSe70Sbx (x=15, 20, 25) chalcogenide glasses
journal, January 2014

  • Kaswan, Anusaiya; Kumari, Vandana; Patidar, Dinesh
  • Processing and Application of Ceramics, Vol. 8, Issue 1
  • DOI: 10.2298/PAC1401025K

Crystalline and amorphous structures of Ge–Sb–Te nanoparticles
journal, July 2007

  • Park, Gyeong-Su; Kwon, Ji-Hwan; Kim, Miyoung
  • Journal of Applied Physics, Vol. 102, Issue 1
  • DOI: 10.1063/1.2752550

A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials
journal, July 2017

  • Wang, Jiang-Jing; Xu, Ya-Zhi; Mazzarello, Riccardo
  • Materials, Vol. 10, Issue 8
  • DOI: 10.3390/ma10080862

Temperature dependent resonant X-ray diffraction of single-crystalline Ge2Sb2Te5
journal, January 2013

  • Urban, Philipp; Schneider, Matthias N.; Erra, Loredana
  • CrystEngComm, Vol. 15, Issue 24
  • DOI: 10.1039/c3ce26956f

Disorder-Driven Metal-Insulator Transitions in Deformable Lattices
journal, January 2017


Phase transformation in Pb:GeSbTe chalcogenide films
journal, October 2008

  • Kumar, J.; Kumar, P.; Ahmad, M.
  • The European Physical Journal Applied Physics, Vol. 44, Issue 2
  • DOI: 10.1051/epjap:2008165

Topological and chemical ordering induced by Ni and Nd in Al 87 Ni 7 Nd 6 metallic glass
journal, December 2004


Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei
journal, February 1940

  • Avrami, Melvin
  • The Journal of Chemical Physics, Vol. 8, Issue 2
  • DOI: 10.1063/1.1750631

Weyl node assisted conductivity switch in interfacial phase-change memory with van der Waals interfaces
journal, December 2017


Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues
journal, December 2017

  • Noé, Pierre; Vallée, Christophe; Hippert, Françoise
  • Semiconductor Science and Technology, Vol. 33, Issue 1
  • DOI: 10.1088/1361-6641/aa7c25

Disorder-induced localization in crystalline phase-change materials
journal, January 2011

  • Siegrist, T.; Jost, P.; Volker, H.
  • Nature Materials, Vol. 10, Issue 3
  • DOI: 10.1038/nmat2934

First-sharp diffraction peaks in amorphous GeTe and Ge 2 Sb 2 Te 5 films prepared by vacuum-thermal deposition
journal, December 2012

  • Nakaoka, Toshihiro; Satoh, Hiroki; Honjo, Saori
  • AIP Advances, Vol. 2, Issue 4
  • DOI: 10.1063/1.4773329

Kinetics of Phase Change. I General Theory
journal, December 1939

  • Avrami, Melvin
  • The Journal of Chemical Physics, Vol. 7, Issue 12, p. 1103-1112
  • DOI: 10.1063/1.1750380

New Structural Picture of the Ge 2 Sb 2 Te 5 Phase-Change Alloy
journal, January 2011


In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus
journal, January 2018

  • Azevedo, Raimunda S. S.; de Sousa, Jorge R.; Araujo, Marialva T. F.
  • Scientific Reports, Vol. 8, Issue 1
  • DOI: 10.1038/s41598-017-17765-5

Electrical properties of the Ge2Sb2Te5 thin films for phase change memory application
conference, January 2016

  • Lazarenko, P. I.; Sherchenkov, A. A.; Kozyukhin, S. A.
  • REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Proceedings of the 35th Annual Review of Progress in Quantitative Nondestructive Evaluation, AIP Conference Proceedings
  • DOI: 10.1063/1.4945968

The Electrical and Structural Properties of Nitrogen Ge1Sb2Te4 Thin Film
journal, March 2018


Disorder‐Induced Localization in Crystalline Pseudo‐Binary GeTe–Sb 2 Te 3 Alloys between Ge 3 Sb 2 Te 6 and GeTe
journal, May 2015

  • Jost, Peter; Volker, Hanno; Poitz, Annika
  • Advanced Functional Materials, Vol. 25, Issue 40
  • DOI: 10.1002/adfm.201500848