DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Additive Destabilization of Porous Magnesium Borohydride Framework with Core-Shell Structure

Abstract

Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core-shell structure of porous Mg(BH4)2-based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet-chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4)2. A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated ..gamma..-phase Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol-1 lower than that of Mg(BH4)2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg- and B- elements) from oxidizing, which is a necessary condition to reversibility.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1];  [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Korea Inst. of Science and Technology, Seoul (Korea, Republic of)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  4. Korea Inst. of Science and Technology, Seoul (Korea, Republic of)
  5. National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)
  6. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office; National Research Foundation of Korea (NRF)
OSTI Identifier:
1825019
Alternate Identifier(s):
OSTI ID: 1822537; OSTI ID: 1824295
Report Number(s):
NREL/JA-5900-79660
Journal ID: ISSN 1613-6810; ark:/13030/qt86w0m3bp; TRN: US2215764
Grant/Contract Number:  
AC02-05CH11231; NA0003525; AC04-94AL85000; AC52-07NA27344; AC36-08GO28308; 2020M3H4A3106354; DE‐NA‐0003525; DE‐AC02‐05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Small
Additional Journal Information:
Journal Volume: 17; Journal Issue: 44; Journal ID: ISSN 1613-6810
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; additive destabilization; magnesium borohydride

Citation Formats

Dun, Chaochao, Jeong, Sohee, Liu, Yi‐Sheng, Leick, Noemi, Mattox, Tracy M., Guo, Jinghua, Lee, Joo‐Won, Gennett, Thomas, Stavila, Vitalie, and Urban, Jeffrey J. Additive Destabilization of Porous Magnesium Borohydride Framework with Core-Shell Structure. United States: N. p., 2021. Web. doi:10.1002/smll.202101989.
Dun, Chaochao, Jeong, Sohee, Liu, Yi‐Sheng, Leick, Noemi, Mattox, Tracy M., Guo, Jinghua, Lee, Joo‐Won, Gennett, Thomas, Stavila, Vitalie, & Urban, Jeffrey J. Additive Destabilization of Porous Magnesium Borohydride Framework with Core-Shell Structure. United States. https://doi.org/10.1002/smll.202101989
Dun, Chaochao, Jeong, Sohee, Liu, Yi‐Sheng, Leick, Noemi, Mattox, Tracy M., Guo, Jinghua, Lee, Joo‐Won, Gennett, Thomas, Stavila, Vitalie, and Urban, Jeffrey J. Mon . "Additive Destabilization of Porous Magnesium Borohydride Framework with Core-Shell Structure". United States. https://doi.org/10.1002/smll.202101989. https://www.osti.gov/servlets/purl/1825019.
@article{osti_1825019,
title = {Additive Destabilization of Porous Magnesium Borohydride Framework with Core-Shell Structure},
author = {Dun, Chaochao and Jeong, Sohee and Liu, Yi‐Sheng and Leick, Noemi and Mattox, Tracy M. and Guo, Jinghua and Lee, Joo‐Won and Gennett, Thomas and Stavila, Vitalie and Urban, Jeffrey J.},
abstractNote = {Design of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core-shell structure of porous Mg(BH4)2-based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet-chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4)2. A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated ..gamma..-phase Mg(BH4)2 particles commences at 100 °C and reaches a maximum of 9.4 wt% at 385 °C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol-1 lower than that of Mg(BH4)2 without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg- and B- elements) from oxidizing, which is a necessary condition to reversibility.},
doi = {10.1002/smll.202101989},
journal = {Small},
number = 44,
volume = 17,
place = {United States},
year = {Mon Sep 27 00:00:00 EDT 2021},
month = {Mon Sep 27 00:00:00 EDT 2021}
}

Works referenced in this record:

A Mechanism for Non-stoichiometry in the Lithium Amide/Lithium Imide Hydrogen Storage Reaction
journal, February 2007

  • David, William I. F.; Jones, Martin O.; Gregory, Duncan H.
  • Journal of the American Chemical Society, Vol. 129, Issue 6
  • DOI: 10.1021/ja066016s

Reversibility and Improved Hydrogen Release of Magnesium Borohydride
journal, February 2010

  • Newhouse, Rebecca J.; Stavila, Vitalie; Hwang, Son-Jong
  • The Journal of Physical Chemistry C, Vol. 114, Issue 11
  • DOI: 10.1021/jp9116744

Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery
journal, August 2012

  • Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S.
  • Angewandte Chemie International Edition, Vol. 51, Issue 39, p. 9780-9783
  • DOI: 10.1002/anie.201204913

Enhanced hydrogen storage/sensing of metal hydrides by nanomodification
journal, March 2020


Nanointerface-Driven Reversible Hydrogen Storage in the Nanoconfined Li-N-H System
journal, January 2017

  • Wood, Brandon C.; Stavila, Vitalie; Poonyayant, Natchapol
  • Advanced Materials Interfaces, Vol. 4, Issue 3
  • DOI: 10.1002/admi.201600803

Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates
journal, June 2002


Improved hydrogen storage performances of LiAlH 4 + Mg( BH 4 ) 2 composite with TiF 3 addition
journal, September 2020

  • Sulaiman, Nurul N.; Ismail, Mohammad; Timmiati, Sharifah N.
  • International Journal of Energy Research, Vol. 45, Issue 2
  • DOI: 10.1002/er.5984

Sodium alanates for reversible hydrogen storage
journal, February 2000


Runaway Carbon Dioxide Conversion Leads to Enhanced Uptake in a Nanohybrid Form of Porous Magnesium Borohydride
journal, September 2019

  • Jeong, Sohee; Milner, Phillip J.; Wan, Liwen F.
  • Advanced Materials, Vol. 31, Issue 44
  • DOI: 10.1002/adma.201904252

The renaissance of hydrides as energy materials
journal, December 2016


Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress
journal, March 2019

  • Makepeace, Joshua W.; He, Teng; Weidenthaler, Claudia
  • International Journal of Hydrogen Energy, Vol. 44, Issue 15
  • DOI: 10.1016/j.ijhydene.2019.01.144

Carbon-Coated Li3N Nanofibers for Advanced Hydrogen Storage
journal, August 2013

  • Xia, Guanglin; Li, Dan; Chen, Xiaowei
  • Advanced Materials, Vol. 25, Issue 43, p. 6238-6244
  • DOI: 10.1002/adma.201301927

Recent progress in magnesium borohydride Mg(BH4)2: Fundamentals and applications for energy storage
journal, August 2016

  • Zavorotynska, Olena; El-Kharbachi, Abdelouahab; Deledda, Stefano
  • International Journal of Hydrogen Energy, Vol. 41, Issue 32
  • DOI: 10.1016/j.ijhydene.2016.02.015

Thermal decomposition behaviors of magnesium borohydride doped with metal fluoride additives
journal, May 2013


First-Principles Prediction of Thermodynamically Reversible Hydrogen Storage Reactions in the Li-Mg-Ca-B-H System
journal, January 2009

  • Ozolins, V.; Majzoub, E. H.; Wolverton, C.
  • Journal of the American Chemical Society, Vol. 131, Issue 1
  • DOI: 10.1021/ja8066429

Reversible hydrogen sorption in the composite made of magnesium borohydride and silica aerogel
journal, September 2016

  • Rueda, Miriam; Sanz-Moral, Luis Miguel; Girella, Alessandro
  • International Journal of Hydrogen Energy, Vol. 41, Issue 34
  • DOI: 10.1016/j.ijhydene.2016.07.074

Role of native defects and the effects of metal additives on the kinetics of magnesium borohydride
journal, January 2019

  • Huang, Zhuonan; Wang, Yuqi; Wang, Di
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 21
  • DOI: 10.1039/C9CP01467E

Al 2 O 3 Atomic Layer Deposition on Nanostructured γ-Mg(BH 4 ) 2 for H 2 Storage
journal, January 2021

  • Leick, Noemi; Strange, Nicholas A.; Schneemann, Andreas
  • ACS Applied Energy Materials, Vol. 4, Issue 2
  • DOI: 10.1021/acsaem.0c02314

Hydrogen-storage materials for mobile applications
journal, November 2001

  • Schlapbach, Louis; Züttel, Andreas
  • Nature, Vol. 414, Issue 6861
  • DOI: 10.1038/35104634

Effect of several metal chlorides on the thermal decomposition behaviour of α-Mg(BH4)2
journal, September 2011


Hydrogen cycling in γ-Mg(BH 4 ) 2 with cobalt-based additives
journal, January 2015

  • Zavorotynska, O.; Saldan, I.; Hino, S.
  • Journal of Materials Chemistry A, Vol. 3, Issue 12
  • DOI: 10.1039/C5TA00511F

Metal borohydrides and derivatives – synthesis, structure and properties
journal, January 2017

  • Paskevicius, Mark; Jepsen, Lars H.; Schouwink, Pascal
  • Chemical Society Reviews, Vol. 46, Issue 5
  • DOI: 10.1039/C6CS00705H

Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts
journal, March 2011

  • Jeon, Ki-Joon; Moon, Hoi Ri; Ruminski, Anne M.
  • Nature Materials, Vol. 10, Issue 4
  • DOI: 10.1038/nmat2978

A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures
journal, March 2014

  • Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4519

In-Situ X-ray Diffraction Study of γ-Mg(BH 4 ) 2 Decomposition
journal, July 2012

  • Paskevicius, Mark; Pitt, Mark P.; Webb, Colin J.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 29
  • DOI: 10.1021/jp302898k

Reaction Kinetics in Differential Thermal Analysis
journal, November 1957


NbF5 additive improves hydrogen release from magnesium borohydride
journal, December 2012


The kinetic properties of Mg(BH 4 ) 2 infiltrated in activated carbon
journal, April 2009


Enhanced hydrogen storage properties of high-loading nanoconfined LiBH4–Mg(BH4)2 composites with porous hollow carbon nanospheres
journal, January 2021


Sodium Alanate Nanoparticles − Linking Size to Hydrogen Storage Properties
journal, May 2008

  • Baldé, Cornelis P.; Hereijgers, Bart P. C.; Bitter, Johannes H.
  • Journal of the American Chemical Society, Vol. 130, Issue 21
  • DOI: 10.1021/ja710667v

Graphene-Tailored Thermodynamics and Kinetics to Fabricate Metal Borohydride Nanoparticles with High Purity and Enhanced Reversibility
journal, January 2018

  • Zhang, Hongyu; Xia, Guanglin; Zhang, Jian
  • Advanced Energy Materials, Vol. 8, Issue 13
  • DOI: 10.1002/aenm.201702975

Complex hydrides for hydrogen storage – new perspectives
journal, April 2014


A Unique Double‐Layered Carbon Nanobowl‐Confined Lithium Borohydride for Highly Reversible Hydrogen Storage
journal, July 2020


Evaluation of the standard enthalpies and isobaric potentials of the formation of certain complex hydrides
journal, February 1971

  • Kuznetsov, V. A.; Dymova, T. N.
  • Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, Vol. 20, Issue 2
  • DOI: 10.1007/BF00869009

Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage
journal, February 2016

  • Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10804