DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Runaway Carbon Dioxide Conversion Leads to Enhanced Uptake in a Nanohybrid Form of Porous Magnesium Borohydride

Abstract

Leveraging molecular-level controls to enhance CO2 capture in solid-state materials has received tremendous attention in recent years. Here, a new class of hybrid nanomaterials constructed from intrinsically porous γ-Mg(BH4 )2 nanocrystals and reduced graphene oxide (MBHg) is described. These nanomaterials exhibit kinetically controlled, irreversible CO2 uptake profiles with high uptake capacities (>19.9 mmol g-1 ) at low partial pressures and temperatures between 40 and 100 °C. Systematic experiments and first-principles calculations reveal the mechanism of reaction between CO2 and MBHg and unveil the role of chemically activated, metastable (BH3 -HCOO)- centers that display more thermodynamically favorable reaction and potentially faster reaction kinetics than the parent BH4 - centers. Overall, it is demonstrated that size reduction to the nanoscale regime and the generation of reactive, metastable intermediates improve the CO2 uptake properties in metal borohydride nanomaterials.

Authors:
 [1];  [2];  [3];  [1];  [4];  [1];  [5];  [6];  [7];  [8];  [1];  [4];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cornell Univ., Ithaca, NY (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Univ. of California, Berkeley, CA (United States)
  6. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  7. National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Santa Cruz, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS); National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1567036
Alternate Identifier(s):
OSTI ID: 1563023; OSTI ID: 1577943; OSTI ID: 1656539
Report Number(s):
NREL/JA-5900-74987; LLNL-JRNL-762420
Journal ID: ISSN 0935-9648
Grant/Contract Number:  
AC36-08GO28308; AC02-05CH11231; AC52-07NA27344; SC0001015; AC02‐05CH11231; AC36‐08GO28308; AC52‐07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 31; Journal Issue: 44; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; carbon dioxide capture; kinetics; magnesium borohydride gamma phase; nanomaterials; reduced graphene oxide; Energy - Conversion, Materials science, Chemistry

Citation Formats

Jeong, Sohee, Milner, Phillip J., Wan, Liwen F., Liu, Yi-Sheng, Oktawiec, Julia, Zaia, Edmond W., Forse, Alexander C., Marius, Noemie, Gennett, Thomas, Guo, Jinghua, Prendergast, David, Long, Jeffrey R., and Urban, Jeffrey J. Runaway Carbon Dioxide Conversion Leads to Enhanced Uptake in a Nanohybrid Form of Porous Magnesium Borohydride. United States: N. p., 2019. Web. doi:10.1002/adma.201904252.
Jeong, Sohee, Milner, Phillip J., Wan, Liwen F., Liu, Yi-Sheng, Oktawiec, Julia, Zaia, Edmond W., Forse, Alexander C., Marius, Noemie, Gennett, Thomas, Guo, Jinghua, Prendergast, David, Long, Jeffrey R., & Urban, Jeffrey J. Runaway Carbon Dioxide Conversion Leads to Enhanced Uptake in a Nanohybrid Form of Porous Magnesium Borohydride. United States. https://doi.org/10.1002/adma.201904252
Jeong, Sohee, Milner, Phillip J., Wan, Liwen F., Liu, Yi-Sheng, Oktawiec, Julia, Zaia, Edmond W., Forse, Alexander C., Marius, Noemie, Gennett, Thomas, Guo, Jinghua, Prendergast, David, Long, Jeffrey R., and Urban, Jeffrey J. Fri . "Runaway Carbon Dioxide Conversion Leads to Enhanced Uptake in a Nanohybrid Form of Porous Magnesium Borohydride". United States. https://doi.org/10.1002/adma.201904252. https://www.osti.gov/servlets/purl/1567036.
@article{osti_1567036,
title = {Runaway Carbon Dioxide Conversion Leads to Enhanced Uptake in a Nanohybrid Form of Porous Magnesium Borohydride},
author = {Jeong, Sohee and Milner, Phillip J. and Wan, Liwen F. and Liu, Yi-Sheng and Oktawiec, Julia and Zaia, Edmond W. and Forse, Alexander C. and Marius, Noemie and Gennett, Thomas and Guo, Jinghua and Prendergast, David and Long, Jeffrey R. and Urban, Jeffrey J.},
abstractNote = {Leveraging molecular-level controls to enhance CO2 capture in solid-state materials has received tremendous attention in recent years. Here, a new class of hybrid nanomaterials constructed from intrinsically porous γ-Mg(BH4 )2 nanocrystals and reduced graphene oxide (MBHg) is described. These nanomaterials exhibit kinetically controlled, irreversible CO2 uptake profiles with high uptake capacities (>19.9 mmol g-1 ) at low partial pressures and temperatures between 40 and 100 °C. Systematic experiments and first-principles calculations reveal the mechanism of reaction between CO2 and MBHg and unveil the role of chemically activated, metastable (BH3 -HCOO)- centers that display more thermodynamically favorable reaction and potentially faster reaction kinetics than the parent BH4 - centers. Overall, it is demonstrated that size reduction to the nanoscale regime and the generation of reactive, metastable intermediates improve the CO2 uptake properties in metal borohydride nanomaterials.},
doi = {10.1002/adma.201904252},
journal = {Advanced Materials},
number = 44,
volume = 31,
place = {United States},
year = {Fri Sep 20 00:00:00 EDT 2019},
month = {Fri Sep 20 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Amine-functionalized metal–organic frameworks: structure, synthesis and applications
journal, January 2016

  • Lin, Yichao; Kong, Chunlong; Chen, Liang
  • RSC Advances, Vol. 6, Issue 39
  • DOI: 10.1039/C6RA01536K

Reversibility and Improved Hydrogen Release of Magnesium Borohydride
journal, February 2010

  • Newhouse, Rebecca J.; Stavila, Vitalie; Hwang, Son-Jong
  • The Journal of Physical Chemistry C, Vol. 114, Issue 11
  • DOI: 10.1021/jp9116744

Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery
journal, August 2012

  • Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S.
  • Angewandte Chemie International Edition, Vol. 51, Issue 39, p. 9780-9783
  • DOI: 10.1002/anie.201204913

Enhancement of CO 2 binding and mechanical properties upon diamine functionalization of M 2 (dobpdc) metal–organic frameworks
journal, January 2018

  • Lee, Jung-Hoon; Siegelman, Rebecca L.; Maserati, Lorenzo
  • Chemical Science, Vol. 9, Issue 23
  • DOI: 10.1039/C7SC05217K

Infrared spectroscopic and magnetic behaviour of xNd2O3(1−x)Na2B4O7 glasses
journal, January 2001


Examining the selectivity of borohydride for carbon dioxide and bicarbonate reduction in protic conditions
journal, June 2015


Role of Amine–Cavity Interactions in Determining the Structure and Mechanical Properties of the Ferroelectric Hybrid Perovskite [NH 3 NH 2 ]Zn(HCOO) 3
journal, December 2015


Insight into Mg(BH 4 ) 2 with Synchrotron X-ray Diffraction: Structure Revision, Crystal Chemistry, and Anomalous Thermal Expansion
journal, March 2009

  • Filinchuk, Yaroslav; Černý, Radovan; Hagemann, Hans
  • Chemistry of Materials, Vol. 21, Issue 5
  • DOI: 10.1021/cm803019e

Unoxidized Graphene/Alumina Nanocomposite: Fracture- and Wear-Resistance Effects of Graphene on Alumina Matrix
journal, June 2014

  • Kim, Hyo Jin; Lee, Sung-Min; Oh, Yoon-Suk
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05176

Carbon Capture and Storage: How Green Can Black Be?
journal, September 2009


Reactions of carbon dioxide with sodium and lithium borohydrides
journal, November 1958


Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Recent advances in capture of carbon dioxide using alkali-metal-based oxides
journal, January 2011

  • Wang, Shengping; Yan, Suli; Ma, Xinbin
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01116b

Recent progress in magnesium borohydride Mg(BH4)2: Fundamentals and applications for energy storage
journal, August 2016

  • Zavorotynska, Olena; El-Kharbachi, Abdelouahab; Deledda, Stefano
  • International Journal of Hydrogen Energy, Vol. 41, Issue 32
  • DOI: 10.1016/j.ijhydene.2016.02.015

Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves
journal, July 2010

  • Serna-Guerrero, Rodrigo; Sayari, Abdelhamid
  • Chemical Engineering Journal, Vol. 161, Issue 1-2
  • DOI: 10.1016/j.cej.2010.04.042

Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption
journal, January 2011

  • Mason, Jarad A.; Sumida, Kenji; Herm, Zoey R.
  • Energy & Environmental Science, Vol. 4, Issue 8, p. 3030-3040
  • DOI: 10.1039/c1ee01720a

Fast carbon dioxide recycling by reaction with γ-Mg(BH 4 ) 2
journal, January 2014

  • Vitillo, Jenny G.; Groppo, Elena; Bardají, Elisa Gil
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 41
  • DOI: 10.1039/C4CP03300K

Thermodynamic Properties of CO 2 Conversion by Sodium Borohydride
journal, December 2014


Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al 2 O 3 for Enhanced CO 2 Capture Performance
journal, August 2017

  • Armutlulu, Andac; Naeem, Muhammad Awais; Liu, Hsueh-Ju
  • Advanced Materials, Vol. 29, Issue 41
  • DOI: 10.1002/adma.201702896

Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III
journal, February 1941

  • Avrami, Melvin
  • The Journal of Chemical Physics, Vol. 9, Issue 2, p. 177-184
  • DOI: 10.1063/1.1750872

Cooperative insertion of CO2 in diamine-appended metal-organic frameworks
journal, March 2015

  • McDonald, Thomas M.; Mason, Jarad A.; Kong, Xueqian
  • Nature, Vol. 519, Issue 7543
  • DOI: 10.1038/nature14327

Facile High-Yield Synthesis of Pure, Crystalline Mg(BH 4 ) 2
journal, October 2007

  • Zanella, Pierino; Crociani, Laura; Masciocchi, Norberto
  • Inorganic Chemistry, Vol. 46, Issue 22
  • DOI: 10.1021/ic701436c

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc)
journal, April 2012

  • McDonald, Thomas M.; Lee, Woo Ram; Mason, Jarad A.
  • Journal of the American Chemical Society, Vol. 134, Issue 16, p. 7056-7065
  • DOI: 10.1021/ja300034j

Porous and Dense Magnesium Borohydride Frameworks: Synthesis, Stability, and Reversible Absorption of Guest Species
journal, September 2011

  • Filinchuk, Yaroslav; Richter, Bo; Jensen, Torben R.
  • Angewandte Chemie International Edition, Vol. 50, Issue 47
  • DOI: 10.1002/anie.201100675

Production of nitrogen-doped graphite from carbon dioxide using polyaminoborane
journal, January 2013

  • Xiong, Ran; Li, Xue; Byeon, Ayeong
  • RSC Advances, Vol. 3, Issue 48
  • DOI: 10.1039/c3ra44288h

Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica
journal, July 2012

  • Monazam, Esmail R.; Shadle, Lawrence J.; Miller, David C.
  • AIChE Journal, Vol. 59, Issue 3
  • DOI: 10.1002/aic.13870

Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation
journal, January 2012

  • Nandi, Mahasweta; Okada, Keisuke; Dutta, Arghya
  • Chemical Communications, Vol. 48, Issue 83
  • DOI: 10.1039/c2cc35334b

Parametric Study of Cs/CaO Sorbents with Respect to Simulated Flue Gas at High Temperatures
journal, August 2005

  • Roesch, Alexander; Reddy, Ettireddy P.; Smirniotis, Panagiotis G.
  • Industrial & Engineering Chemistry Research, Vol. 44, Issue 16
  • DOI: 10.1021/ie040274l

Kinetics Studies of CO 2 Adsorption/Desorption on Amine-Functionalized Multiwalled Carbon Nanotubes
journal, July 2014

  • Liu, Qing; Shi, Junjie; Zheng, Shudong
  • Industrial & Engineering Chemistry Research, Vol. 53, Issue 29
  • DOI: 10.1021/ie502009n

Synthesis chemistry of metal-organic frameworks for CO 2 capture and conversion for sustainable energy future
journal, September 2018


ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide
journal, July 2003


Perspectives of in situ/operando resonant inelastic X-ray scattering in catalytic energy materials science
journal, April 2015

  • Liu, Yi-Sheng; Glans, Per-Anders; Chuang, Cheng-Hao
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 200
  • DOI: 10.1016/j.elspec.2015.07.004

CO 2 -Enhanced Thermolytic H 2 Release from Ammonia Borane
journal, April 2011

  • Zhang, Junshe; Zhao, Yu; Akins, Daniel L.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 16
  • DOI: 10.1021/jp200049y

Preparation and characterization of 10B boric acid with high purity for nuclear industry
journal, July 2016


Porous materials for carbon dioxide capture
journal, January 2013

  • Lu, An-Hui; Hao, Guang-Ping
  • Annual Reports Section "A" (Inorganic Chemistry), Vol. 109
  • DOI: 10.1039/c3ic90003g

Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage
journal, February 2016

  • Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10804

Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery
journal, August 2012

  • Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S.
  • Angewandte Chemie, Vol. 124, Issue 39
  • DOI: 10.1002/ange.201204913

Porous and Dense Magnesium Borohydride Frameworks: Synthesis, Stability, and Reversible Absorption of Guest Species
journal, September 2011

  • Filinchuk, Yaroslav; Richter, Bo; Jensen, Torben R.
  • Angewandte Chemie, Vol. 123, Issue 47
  • DOI: 10.1002/ange.201100675