DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity

Abstract

Aerobic alcohol oxidations catalyzed by transition metal salts and aminoxyls are prominent examples of cooperative catalysis. Cu/aminoxyl catalysts have been studied previously and feature “integrated cooperativity”, in which CuII and the aminoxyl participate together to mediate alcohol oxidation. Here we investigate a complementary Fe/aminoxyl catalyst system and provide evidence for “serial cooperativity”, involving a redox cascade wherein the alcohol is oxidized by an in situ-generated oxoammonium species, which is directly detected in the catalytic reaction mixture by cyclic step chronoamperometry. The mechanistic difference between the Cu- and Fe-based catalysts arises from the use iron(III) nitrate, which initiates a NOx-based redox cycle for oxidation of aminoxyl/hydroxylamine to oxoammonium. Here, the different mechanisms for the Cu- and Fe-based catalyst systems are manifested in different alcohol oxidation chemoselectivity and functional group compatibility.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Univ. of Wisconsin, Madison, WI (United States)
Publication Date:
Research Org.:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF)
OSTI Identifier:
1819738
Grant/Contract Number:  
FG02-05ER15690; CHE-1048642
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 143; Journal Issue: 28; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Redox reactions; Alcohols; Cooperativity; Catalysts; Oxidation

Citation Formats

Nutting, Jordan E., Mao, Kaining, and Stahl, Shannon S. Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity. United States: N. p., 2021. Web. doi:10.1021/jacs.1c05224.
Nutting, Jordan E., Mao, Kaining, & Stahl, Shannon S. Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity. United States. https://doi.org/10.1021/jacs.1c05224
Nutting, Jordan E., Mao, Kaining, and Stahl, Shannon S. Wed . "Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity". United States. https://doi.org/10.1021/jacs.1c05224. https://www.osti.gov/servlets/purl/1819738.
@article{osti_1819738,
title = {Iron(III) Nitrate/TEMPO-Catalyzed Aerobic Alcohol Oxidation: Distinguishing between Serial versus Integrated Redox Cooperativity},
author = {Nutting, Jordan E. and Mao, Kaining and Stahl, Shannon S.},
abstractNote = {Aerobic alcohol oxidations catalyzed by transition metal salts and aminoxyls are prominent examples of cooperative catalysis. Cu/aminoxyl catalysts have been studied previously and feature “integrated cooperativity”, in which CuII and the aminoxyl participate together to mediate alcohol oxidation. Here we investigate a complementary Fe/aminoxyl catalyst system and provide evidence for “serial cooperativity”, involving a redox cascade wherein the alcohol is oxidized by an in situ-generated oxoammonium species, which is directly detected in the catalytic reaction mixture by cyclic step chronoamperometry. The mechanistic difference between the Cu- and Fe-based catalysts arises from the use iron(III) nitrate, which initiates a NOx-based redox cycle for oxidation of aminoxyl/hydroxylamine to oxoammonium. Here, the different mechanisms for the Cu- and Fe-based catalyst systems are manifested in different alcohol oxidation chemoselectivity and functional group compatibility.},
doi = {10.1021/jacs.1c05224},
journal = {Journal of the American Chemical Society},
number = 28,
volume = 143,
place = {United States},
year = {Wed Jul 07 00:00:00 EDT 2021},
month = {Wed Jul 07 00:00:00 EDT 2021}
}

Works referenced in this record:

On the Use of Stable Organic Nitroxyl Radicals for the Oxidation of Primary and Secondary Alcohols
journal, October 1996

  • Nooy, Arjan E. J. de; Besemer, Arie C.; Bekkum, Herman van
  • Synthesis, Vol. 1996, Issue 10
  • DOI: 10.1055/s-1996-4369

Nitroxide-catalyzed transition-metal-free aerobic oxidation processes
journal, January 2013

  • Wertz, Sebastian; Studer, Armido
  • Green Chemistry, Vol. 15, Issue 11
  • DOI: 10.1039/c3gc41459k

Practical Aerobic Oxidations of Alcohols and Amines with Homogeneous Copper/TEMPO and Related Catalyst Systems
journal, July 2014

  • Ryland, Bradford L.; Stahl, Shannon S.
  • Angewandte Chemie International Edition, Vol. 53, Issue 34
  • DOI: 10.1002/anie.201403110

Aerobic oxidation catalysis with stable radicals
journal, January 2014

  • Cao, Qun; Dornan, Laura M.; Rogan, Luke
  • Chem. Commun., Vol. 50, Issue 35
  • DOI: 10.1039/C3CC47081D

Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions
journal, June 1987

  • Lucio Anelli, Pier; Biffi, Carlo; Montanari, Fernando
  • The Journal of Organic Chemistry, Vol. 52, Issue 12
  • DOI: 10.1021/jo00388a038

Large-Scale Oxidations in the Pharmaceutical Industry
journal, July 2006

  • Caron, Stéphane; Dugger, Robert W.; Ruggeri, Sally Gut
  • Chemical Reviews, Vol. 106, Issue 7
  • DOI: 10.1021/cr040679f

Cu(ii)-nitroxyl radicals as catalytic galactose oxidase mimics
journal, January 2003

  • Dijksman, Arn�; Arends, Isabel W. C. E.; Sheldon, Roger A.
  • Organic & Biomolecular Chemistry, Vol. 1, Issue 18
  • DOI: 10.1039/b305941c

Cu(bipy) 2+ /TEMPO-Catalyzed Oxidation of Alcohols: Radical or Nonradical Mechanism?
journal, December 2011

  • Belanzoni, Paola; Michel, Carine; Baerends, Evert Jan
  • Inorganic Chemistry, Vol. 50, Issue 23
  • DOI: 10.1021/ic200725k

Mechanism of Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation
journal, January 2013

  • Hoover, Jessica M.; Ryland, Bradford L.; Stahl, Shannon S.
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja3117203

Mechanism of Alcohol Oxidation Mediated by Copper(II) and Nitroxyl Radicals
journal, August 2014

  • Ryland, Bradford L.; McCann, Scott D.; Brunold, Thomas C.
  • Journal of the American Chemical Society, Vol. 136, Issue 34
  • DOI: 10.1021/ja5070137

Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators
journal, June 2016


Reaction of Cyclic Nitroxides with Nitrogen Dioxide:  The Intermediacy of the Oxoammonium Cations
journal, July 2003

  • Goldstein, Sara; Samuni, Amram; Russo, Angelo
  • Journal of the American Chemical Society, Vol. 125, Issue 27
  • DOI: 10.1021/ja035286x

NaNO2-activated, iron–TEMPO catalyst system for aerobic alcohol oxidation under mild conditions
journal, January 2005

  • Wang, Naiwei; Liu, Renhua; Chen, Jiping
  • Chemical Communications, Issue 42
  • DOI: 10.1039/b509167e

Iron Chloride/4-Acetamido-TEMPO/Sodium Nitrite-Catalyzed Aerobic Oxidation of Primary Alcohols to the Aldehydes
journal, January 2010

  • Yin, Weili; Chu, Changhu; Lu, Qiongqiong
  • Advanced Synthesis & Catalysis, Vol. 352, Issue 1
  • DOI: 10.1002/adsc.200900662

Development of a General and Practical Iron Nitrate/TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones: Catalysis with Table Salt
journal, April 2011

  • Ma, Shengming; Liu, Jinxian; Li, Suhua
  • Advanced Synthesis & Catalysis, Vol. 353, Issue 6, p. 1005-1017
  • DOI: 10.1002/adsc.201100033

Iron Catalysis for Room-Temperature Aerobic Oxidation of Alcohols to Carboxylic Acids
journal, June 2016

  • Jiang, Xingguo; Zhang, Jiasheng; Ma, Shengming
  • Journal of the American Chemical Society, Vol. 138, Issue 27
  • DOI: 10.1021/jacs.6b03948

Iron/ABNO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones under Ambient Atmosphere
journal, February 2016

  • Wang, Lianyue; Shang, SenSen; Li, Guosong
  • The Journal of Organic Chemistry, Vol. 81, Issue 5
  • DOI: 10.1021/acs.joc.6b00009

Iron-Catalyzed Aerobic Oxidation of Alcohols: Lower Cost and Improved Selectivity
journal, March 2019

  • Jiang, Xingguo; Liu, Jinxian; Ma, Shengming
  • Organic Process Research & Development, Vol. 23, Issue 5
  • DOI: 10.1021/acs.oprd.8b00374

Tuning the Reactivity of TEMPO by Coordination to a Lewis Acid: Isolation and Reactivity of MCl 31 -TEMPO) (M = Fe, Al)
journal, November 2012

  • Scepaniak, Jeremiah J.; Wright, Ashley M.; Lewis, Richard A.
  • Journal of the American Chemical Society, Vol. 134, Issue 47
  • DOI: 10.1021/ja309499h

Oxidation of Alcohols and Activated Alkanes with Lewis Acid-Activated TEMPO
journal, October 2014

  • Nguyen, Thuy-Ai D.; Wright, Ashley M.; Page, Joshua S.
  • Inorganic Chemistry, Vol. 53, Issue 21
  • DOI: 10.1021/ic5018888

Kinetics of Nitroxide Reaction with Iron(II)
journal, September 1999

  • Bar-On, Pazit; Mohsen, Mohammad; Zhang, Renliang
  • Journal of the American Chemical Society, Vol. 121, Issue 35
  • DOI: 10.1021/ja990623g

Electrocatalytic Alcohol Oxidation with TEMPO and Bicyclic Nitroxyl Derivatives: Driving Force Trumps Steric Effects
journal, November 2015

  • Rafiee, Mohammad; Miles, Kelsey C.; Stahl, Shannon S.
  • Journal of the American Chemical Society, Vol. 137, Issue 46, p. 14751-14757
  • DOI: 10.1021/jacs.5b09672

Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin
journal, April 2013

  • Rahimi, Alireza; Azarpira, Ali; Kim, Hoon
  • Journal of the American Chemical Society, Vol. 135, Issue 17, p. 6415-6418
  • DOI: 10.1021/ja401793n

Electrochemical studies of acid-promoted disproportionation of nitroxyl radical
journal, May 2003


Equilibrium Acidities of Superacids
journal, January 2011

  • Kütt, Agnes; Rodima, Toomas; Saame, Jaan
  • The Journal of Organic Chemistry, Vol. 76, Issue 2
  • DOI: 10.1021/jo101409p

Structural Effects on the pH-Dependent Redox Properties of Organic Nitroxyls: Pourbaix Diagrams for TEMPO, ABNO, and Three TEMPO Analogs
journal, November 2017

  • Gerken, James B.; Pang, Yutong Q.; Lauber, Markus B.
  • The Journal of Organic Chemistry, Vol. 83, Issue 14
  • DOI: 10.1021/acs.joc.7b02547

Electronic Structural Analysis of Copper(II)–TEMPO/ABNO Complexes Provides Evidence for Copper(I)–Oxoammonium Character
journal, September 2017

  • Walroth, Richard C.; Miles, Kelsey C.; Lukens, James T.
  • Journal of the American Chemical Society, Vol. 139, Issue 38
  • DOI: 10.1021/jacs.7b07186

Divergent Reactivity of TEMPO with MBr 3 (M = B, Al)
journal, April 2013

  • Wright, Ashley M.; Page, Joshua S.; Scepaniak, Jeremiah J.
  • European Journal of Inorganic Chemistry, Vol. 2013, Issue 22-23
  • DOI: 10.1002/ejic.201300163

A kinetics study of the oxidation of iron(II) by nitric acid
journal, May 1980

  • Epstein, Irving R.; Kustin, Kenneth; Warshaw, Linda Joyce
  • Journal of the American Chemical Society, Vol. 102, Issue 11
  • DOI: 10.1021/ja00531a015

Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols
journal, October 2011

  • Hoover, Jessica M.; Stahl, Shannon S.
  • Journal of the American Chemical Society, Vol. 133, Issue 42
  • DOI: 10.1021/ja206230h

Efficient Aerobic Oxidation of Secondary Alcohols at Ambient Temperature with an ABNO/NO x Catalyst System
journal, October 2013

  • Lauber, Markus B.; Stahl, Shannon S.
  • ACS Catalysis, Vol. 3, Issue 11
  • DOI: 10.1021/cs400746m

Mechanism of oxidation of primary and secondary alcohols by oxopiperidinium salts
journal, September 1977

  • Golubev, V. A.; Borislavskii, V. N.; Aleksandrov, A. L.
  • Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, Vol. 26, Issue 9
  • DOI: 10.1007/BF00924380

Mechanism of the Oxidation of Alcohols by Oxoammonium Cations
journal, June 2007

  • Bailey, William F.; Bobbitt, James M.; Wiberg, Kenneth B.
  • The Journal of Organic Chemistry, Vol. 72, Issue 12
  • DOI: 10.1021/jo0704614

Multichannel gas-uptake/evolution reactor for monitoring liquid-phase chemical reactions
journal, April 2021

  • Salazar, Chase A.; Thompson, Blaise J.; Knapp, Spring M. M.
  • Review of Scientific Instruments, Vol. 92, Issue 4
  • DOI: 10.1063/5.0043007

Catalytic Activity Dependency on Catalyst Components in Aerobic Copper-TEMPO Oxidation
journal, September 2009

  • Kumpulainen, Esa T. T.; Koskinen, Ari M. P.
  • Chemistry - A European Journal, Vol. 15, Issue 41
  • DOI: 10.1002/chem.200901245

Highly Chemoselective Aerobic Oxidation of Amino Alcohols into Amino Carbonyl Compounds
journal, February 2014

  • Sasano, Yusuke; Nagasawa, Shota; Yamazaki, Mai
  • Angewandte Chemie International Edition, Vol. 53, Issue 12
  • DOI: 10.1002/anie.201309634

Copper catalysis for highly selective aerobic oxidation of alcohols to aldehydes/ketones
journal, January 2019

  • Zhai, Di; Ma, Shengming
  • Organic Chemistry Frontiers, Vol. 6, Issue 17
  • DOI: 10.1039/C9QO00740G

Iron-Catalysed Selective Aerobic Oxidation of Alcohols to Carbonyl and Carboxylic Compounds
journal, July 2016

  • Lagerblom, Kalle; Wrigstedt, Pauli; Keskiväli, Juha
  • ChemPlusChem, Vol. 81, Issue 11
  • DOI: 10.1002/cplu.201600240

Process Development of CuI/ABNO/NMI-Catalyzed Aerobic Alcohol Oxidation
journal, July 2015

  • Steves, Janelle E.; Preger, Yuliya; Martinelli, Joseph R.
  • Organic Process Research & Development, Vol. 19, Issue 11
  • DOI: 10.1021/acs.oprd.5b00179

Synthesis of HIV-Maturation Inhibitor BMS-955176 from Betulin by an Enabling Oxidation Strategy
journal, April 2017

  • Ortiz, Adrian; Soumeillant, Maxime; Savage, Scott A.
  • The Journal of Organic Chemistry, Vol. 82, Issue 9
  • DOI: 10.1021/acs.joc.7b00438

Development of a Large-Scale Copper(I)/TEMPO-Catalyzed Aerobic Alcohol Oxidation for the Synthesis of LSD1 Inhibitor GSK2879552
journal, October 2018