DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E

Abstract

HYBRID-E is an inertial confinement fusion implosion design that increases energy coupled to the hot spot by increasing the capsule scale in cylindrical hohlraums while operating within the current experimental limits of the National Ignition Facility. HYBRID-E reduces the hohlraum scale at a fixed capsule size compared to previous HYBRID designs, thereby increasing the hohlraum efficiency and energy coupled to the capsule, and uses the cross-beam energy transfer (CBET) to control the implosion symmetry by operating the inner (23° and 30°) and outer (44° and 50°) laser beams at different wavelengths (Δλ> 0). Small case to capsule ratio designs can suffer from insufficient drive at the waist of the hohlraum. We show that only a small amount of wavelength separation between the inner and outer beams (Δλ1-2 Å) is required to control the symmetry in low-gas-filled hohlraums (0.3 mg/cm3 He) with enough drive at the waist of the hohlraum to symmetrically drive capsules 1180 μm in outer radius. This campaign is the first to use the CBET to control the symmetry in 0.3 mg/cm3 He-filled hohlraums, the lowest gas fill density yet fielded with Δλ> 0. We find a stronger sensitivity of hot spot P2 in μm per Angstrom (40–50more » μm/Å wavelength separation) than observed in high-gas-filled hohlraums and previous longer pulse designs that used a hohlraum gas fill density of 0.6 mg/cm3. There is currently no indication of transfer roll-off with increasing Δλ, indicating that even longer pulses or larger capsules could be driven using the CBET in cylindrical hohlraums. We show that the radiation flux symmetry is well controlled during the foot of the pulse, and that the entire implosion can be tuned symmetrically in the presence of the CBET in this system, with low levels of laser backscatter out of the hohlraum and low levels of hot electron production from intense laser–plasma interactions. Radiation hydrodynamic simulations can accurately represent the early shock symmetry and be used as a design tool, but cannot predict the late-time radiation flux symmetry during the peak of the pulse, and semi-empirical models are used to design the experiments. Deuterium–tritium (DT)-layered tests of 1100 μm inner radius implosions showed performance close to expectations from simulations at velocities up to ~360 km/s, and record yields at this velocity, when increasing the DT fuel layer thickness to mitigate hydrodynamic mixing of the ablator into the hot spot as a result of defects in the ablator. However, when the implosion velocity was increased, mixing due to these defects impacted performance. The ratio of measured to simulated yield for these experiments was directly correlated with the level of observed mixing. These simulations suggest that reducing the mixing, e.g., by improving the capsule defects, could result in higher performance. In addition, future experiments are planned to reduce the coast time at this scale, delay between the peak compression and the end of the laser, to increase the hot spot convergence and pressure. To reduce the coast time by several hundred ps compared to the 1100 μm inner radius implosions, HYBRID-E has also fielded 1050 μm inner radius capsules, which resulted in higher hot spot pressure and a fusion energy yield of ~170 kJ.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1] more »; ORCiD logo [2]; ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1];  [3];  [3];  [4]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [3]; ORCiD logo [2];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [3];  [1]; ORCiD logo [1];  [1]; ORCiD logo [2];  [5];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. General Atomics, San Diego, CA (United States)
  4. Ecole Polytechnique, Palaiseau (France)
  5. Diamond Materials, GmbH, Freiburg (Germany)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1818404
Report Number(s):
LLNL-JRNL-818898
Journal ID: ISSN 1070-664X; 1029170; TRN: US2213960
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 28; Journal Issue: 7; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Plasma confinement; Tritium; Light scattering; Radiative flux; Linear stability analysis; Laser plasma interactions; Fusion energy; Deuterium; Growth factors

Citation Formats

Kritcher, A. L., Zylstra, A. B., Callahan, D. A., Hurricane, O. A., Weber, C., Ralph, J., Casey, D. T., Pak, A., Baker, K., Bachmann, B., Bhandarkar, S., Biener, J., Bionta, R., Braun, T., Bruhn, M., Choate, C., Clark, D., Di Nicola, J. M., Divol, L., Doeppner, T., Geppert-Kleinrath, V., Haan, S., Heebner, J., Hernandez, V., Hinkel, D., Hohenberger, M., Huang, H., Kong, C., Le Pape, S., Mariscal, D., Marley, E., Masse, L., Meaney, K. D., Millot, M., Moore, A., Newman, K., Nikroo, A., Patel, P., Pelz, L., Rice, N., Robey, H., Ross, J. S., Rubery, M., Salmonson, J., Schlossberg, D., Sepke, S., Sequoia, K., Stadermann, M., Strozzi, D., Tommasini, R., Volegov, P., Wild, C., Yang, S., Young, C., Edwards, M. J., Landen, O., Town, R., and Herrmann, M. Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. United States: N. p., 2021. Web. doi:10.1063/5.0047841.
Kritcher, A. L., Zylstra, A. B., Callahan, D. A., Hurricane, O. A., Weber, C., Ralph, J., Casey, D. T., Pak, A., Baker, K., Bachmann, B., Bhandarkar, S., Biener, J., Bionta, R., Braun, T., Bruhn, M., Choate, C., Clark, D., Di Nicola, J. M., Divol, L., Doeppner, T., Geppert-Kleinrath, V., Haan, S., Heebner, J., Hernandez, V., Hinkel, D., Hohenberger, M., Huang, H., Kong, C., Le Pape, S., Mariscal, D., Marley, E., Masse, L., Meaney, K. D., Millot, M., Moore, A., Newman, K., Nikroo, A., Patel, P., Pelz, L., Rice, N., Robey, H., Ross, J. S., Rubery, M., Salmonson, J., Schlossberg, D., Sepke, S., Sequoia, K., Stadermann, M., Strozzi, D., Tommasini, R., Volegov, P., Wild, C., Yang, S., Young, C., Edwards, M. J., Landen, O., Town, R., & Herrmann, M. Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. United States. https://doi.org/10.1063/5.0047841
Kritcher, A. L., Zylstra, A. B., Callahan, D. A., Hurricane, O. A., Weber, C., Ralph, J., Casey, D. T., Pak, A., Baker, K., Bachmann, B., Bhandarkar, S., Biener, J., Bionta, R., Braun, T., Bruhn, M., Choate, C., Clark, D., Di Nicola, J. M., Divol, L., Doeppner, T., Geppert-Kleinrath, V., Haan, S., Heebner, J., Hernandez, V., Hinkel, D., Hohenberger, M., Huang, H., Kong, C., Le Pape, S., Mariscal, D., Marley, E., Masse, L., Meaney, K. D., Millot, M., Moore, A., Newman, K., Nikroo, A., Patel, P., Pelz, L., Rice, N., Robey, H., Ross, J. S., Rubery, M., Salmonson, J., Schlossberg, D., Sepke, S., Sequoia, K., Stadermann, M., Strozzi, D., Tommasini, R., Volegov, P., Wild, C., Yang, S., Young, C., Edwards, M. J., Landen, O., Town, R., and Herrmann, M. Wed . "Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E". United States. https://doi.org/10.1063/5.0047841. https://www.osti.gov/servlets/purl/1818404.
@article{osti_1818404,
title = {Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E},
author = {Kritcher, A. L. and Zylstra, A. B. and Callahan, D. A. and Hurricane, O. A. and Weber, C. and Ralph, J. and Casey, D. T. and Pak, A. and Baker, K. and Bachmann, B. and Bhandarkar, S. and Biener, J. and Bionta, R. and Braun, T. and Bruhn, M. and Choate, C. and Clark, D. and Di Nicola, J. M. and Divol, L. and Doeppner, T. and Geppert-Kleinrath, V. and Haan, S. and Heebner, J. and Hernandez, V. and Hinkel, D. and Hohenberger, M. and Huang, H. and Kong, C. and Le Pape, S. and Mariscal, D. and Marley, E. and Masse, L. and Meaney, K. D. and Millot, M. and Moore, A. and Newman, K. and Nikroo, A. and Patel, P. and Pelz, L. and Rice, N. and Robey, H. and Ross, J. S. and Rubery, M. and Salmonson, J. and Schlossberg, D. and Sepke, S. and Sequoia, K. and Stadermann, M. and Strozzi, D. and Tommasini, R. and Volegov, P. and Wild, C. and Yang, S. and Young, C. and Edwards, M. J. and Landen, O. and Town, R. and Herrmann, M.},
abstractNote = {HYBRID-E is an inertial confinement fusion implosion design that increases energy coupled to the hot spot by increasing the capsule scale in cylindrical hohlraums while operating within the current experimental limits of the National Ignition Facility. HYBRID-E reduces the hohlraum scale at a fixed capsule size compared to previous HYBRID designs, thereby increasing the hohlraum efficiency and energy coupled to the capsule, and uses the cross-beam energy transfer (CBET) to control the implosion symmetry by operating the inner (23° and 30°) and outer (44° and 50°) laser beams at different wavelengths (Δλ> 0). Small case to capsule ratio designs can suffer from insufficient drive at the waist of the hohlraum. We show that only a small amount of wavelength separation between the inner and outer beams (Δλ1-2 Å) is required to control the symmetry in low-gas-filled hohlraums (0.3 mg/cm3 He) with enough drive at the waist of the hohlraum to symmetrically drive capsules 1180 μm in outer radius. This campaign is the first to use the CBET to control the symmetry in 0.3 mg/cm3 He-filled hohlraums, the lowest gas fill density yet fielded with Δλ> 0. We find a stronger sensitivity of hot spot P2 in μm per Angstrom (40–50 μm/Å wavelength separation) than observed in high-gas-filled hohlraums and previous longer pulse designs that used a hohlraum gas fill density of 0.6 mg/cm3. There is currently no indication of transfer roll-off with increasing Δλ, indicating that even longer pulses or larger capsules could be driven using the CBET in cylindrical hohlraums. We show that the radiation flux symmetry is well controlled during the foot of the pulse, and that the entire implosion can be tuned symmetrically in the presence of the CBET in this system, with low levels of laser backscatter out of the hohlraum and low levels of hot electron production from intense laser–plasma interactions. Radiation hydrodynamic simulations can accurately represent the early shock symmetry and be used as a design tool, but cannot predict the late-time radiation flux symmetry during the peak of the pulse, and semi-empirical models are used to design the experiments. Deuterium–tritium (DT)-layered tests of 1100 μm inner radius implosions showed performance close to expectations from simulations at velocities up to ~360 km/s, and record yields at this velocity, when increasing the DT fuel layer thickness to mitigate hydrodynamic mixing of the ablator into the hot spot as a result of defects in the ablator. However, when the implosion velocity was increased, mixing due to these defects impacted performance. The ratio of measured to simulated yield for these experiments was directly correlated with the level of observed mixing. These simulations suggest that reducing the mixing, e.g., by improving the capsule defects, could result in higher performance. In addition, future experiments are planned to reduce the coast time at this scale, delay between the peak compression and the end of the laser, to increase the hot spot convergence and pressure. To reduce the coast time by several hundred ps compared to the 1100 μm inner radius implosions, HYBRID-E has also fielded 1050 μm inner radius capsules, which resulted in higher hot spot pressure and a fusion energy yield of ~170 kJ.},
doi = {10.1063/5.0047841},
journal = {Physics of Plasmas},
number = 7,
volume = 28,
place = {United States},
year = {Wed Jul 21 00:00:00 EDT 2021},
month = {Wed Jul 21 00:00:00 EDT 2021}
}

Works referenced in this record:

Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser
journal, May 2018

  • Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5020057

The high velocity, high adiabat, “Bigfoot” campaign and tests of indirect-drive implosion scaling
journal, May 2018

  • Casey, D. T.; Thomas, C. A.; Baker, K. L.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5019741

Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
journal, November 2004

  • Celliers, P. M.; Bradley, D. K.; Collins, G. W.
  • Review of Scientific Instruments, Vol. 75, Issue 11
  • DOI: 10.1063/1.1807008

First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
journal, April 2015


Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Record Energetics for an Inertial Fusion Implosion at NIF
journal, January 2021


Approaching a burning plasma on the NIF
journal, May 2019

  • Hurricane, O. A.; Springer, P. T.; Patel, P. K.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5087256

On the importance of minimizing “coast-time” in x-ray driven inertially confined fusion implosions
journal, September 2017

  • Hurricane, O. A.; Kritcher, A.; Callahan, D. A.
  • Physics of Plasmas, Vol. 24, Issue 9
  • DOI: 10.1063/1.4994856

Evidence of Three-Dimensional Asymmetries Seeded by High-Density Carbon-Ablator Nonuniformity in Experiments at the National Ignition Facility
journal, January 2021


Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility
journal, June 2018


Design and construction of a Gamma reaction history diagnostic for the National Ignition Facility
journal, August 2010


Diagnosing inertial confinement fusion gamma ray physics (invited)
journal, October 2010

  • Herrmann, H. W.; Hoffman, N.; Wilson, D. C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3495770

Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions
journal, August 2013


Beyond alpha-heating: driving inertially confined fusion implosions toward a burning-plasma state on the National Ignition Facility
journal, November 2018

  • Hurricane, O. A.; Callahan, D. A.; Springer, P. T.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aaed71

Energy transfer between lasers in low-gas-fill-density hohlraums
journal, November 2018


Hotspot parameter scaling with velocity and yield for high-adiabat layered implosions at the National Ignition Facility
journal, August 2020


Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators
journal, May 2018

  • Kritcher, A. L.; Clark, D.; Haan, S.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5018000

Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility
journal, November 2016


Symmetric fielding of the largest diamond capsule implosions on the NIF
journal, May 2020

  • Kritcher, A. L.; Casey, D. T.; Thomas, C. A.
  • Physics of Plasmas, Vol. 27, Issue 5, 052710
  • DOI: 10.1063/5.0004221

Neutron source reconstruction from pinhole imaging at National Ignition Facility
journal, February 2014

  • Volegov, P.; Danly, C. R.; Fittinghoff, D. N.
  • Review of Scientific Instruments, Vol. 85, Issue 2
  • DOI: 10.1063/1.4865456

Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

Gated x-ray detector for the National Ignition Facility
journal, October 2006

  • Oertel, John A.; Aragonez, Robert; Archuleta, Tom
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2227439

Tuning the Implosion Symmetry of ICF Targets via Controlled Crossed-Beam Energy Transfer
journal, January 2009


Probing the seeding of hydrodynamic instabilities from nonuniformities in ablator materials using 2D velocimetry
journal, September 2018

  • Ali, S. J.; Celliers, P. M.; Haan, S.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5047943

2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
journal, May 2014


Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility
journal, May 2020

  • Patel, P. K.; Springer, P. T.; Weber, C. R.
  • Physics of Plasmas, Vol. 27, Issue 5
  • DOI: 10.1063/5.0003298

Energy transfer between crossing laser beams
journal, January 1996

  • Kruer, William L.; Wilks, Scott C.; Afeyan, Bedros B.
  • Physics of Plasmas, Vol. 3, Issue 1
  • DOI: 10.1063/1.871863

Integrated modeling of cryogenic layered highfoot experiments at the NIF
journal, May 2016

  • Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4949351

Application of cross-beam energy transfer to control drive symmetry in ICF implosions in low gas fill Hohlraums at the National Ignition Facility
journal, October 2020

  • Pickworth, L. A.; Döppner, T.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 27, Issue 10
  • DOI: 10.1063/5.0004866

An analytic asymmetric-piston model for the impact of mode-1 shell asymmetry on ICF implosions
journal, June 2020

  • Hurricane, O. A.; Casey, D. T.; Landen, O.
  • Physics of Plasmas, Vol. 27, Issue 6
  • DOI: 10.1063/5.0001335

Integrated performance of large HDC-capsule implosions on the National Ignition Facility
journal, November 2020

  • Hohenberger, M.; Casey, D. T.; Kritcher, A. L.
  • Physics of Plasmas, Vol. 27, Issue 11
  • DOI: 10.1063/5.0019083

The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

Hot-spot mix in large-scale HDC implosions at NIF
journal, September 2020

  • Zylstra, A. B.; Casey, D. T.; Kritcher, A.
  • Physics of Plasmas, Vol. 27, Issue 9
  • DOI: 10.1063/5.0003779

Beryllium capsule implosions at a case-to-capsule ratio of 3.7 on the National Ignition Facility
journal, October 2018

  • Zylstra, A. B.; Yi, S. A.; MacLaren, S.
  • Physics of Plasmas, Vol. 25, Issue 10
  • DOI: 10.1063/1.5041285

X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition
journal, July 2008

  • Dewald, E. L.; Rosen, M.; Glenzer, S. H.
  • Physics of Plasmas, Vol. 15, Issue 7
  • DOI: 10.1063/1.2943700

High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility
journal, February 2014


Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation
journal, April 2012

  • Robey, H. F.; Boehly, T. R.; Celliers, P. M.
  • Physics of Plasmas, Vol. 19, Issue 4
  • DOI: 10.1063/1.3694122

Resolving hot spot microstructure using x-ray penumbral imaging (invited)
journal, August 2016

  • Bachmann, B.; Hilsabeck, T.; Field, J.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4959161

Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility
journal, January 2019

  • Berger, R. L.; Thomas, C. A.; Baker, K. L.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5079234

Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, April 2015


Early-Time Symmetry Tuning in the Presence of Cross-Beam Energy Transfer in ICF Experiments on the National Ignition Facility
journal, December 2013


Impact of Localized Radiative Loss on Inertial Confinement Fusion Implosions
journal, April 2020


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740