DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex

Abstract

CRISPR-Cas systems provide adaptive immunity in bacteria and archaea, beginning with integration of foreign sequences into the host CRISPR genomic locus and followed by transcription and maturation of CRISPR RNAs (crRNAs). In some CRISPR systems, a reverse transcriptase (RT) fusion to the Cas1 integrase and Cas6 maturase creates a single protein that enables concerted sequence integration and crRNA production. To elucidate how the RT-integrase organizes distinct enzymatic activities, we present the cryo-EM structure of a Cas6-RT-Cas1—Cas2 CRISPR integrase complex. The structure reveals a heterohexamer in which the RT directly contacts the integrase and maturase domains, suggesting functional coordination between all three active sites. Together with biochemical experiments, our data support a model of sequential enzymatic activities that enable CRISPR sequence acquisition from RNA and DNA substrates. These findings highlight an expanded capacity of some CRISPR systems to acquire diverse sequences that direct CRISPR-mediated interference.

Authors:
 [1]; ORCiD logo [2];  [3]; ORCiD logo [4]; ORCiD logo [2]; ORCiD logo [5]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry, California Inst. for Quantitative Biosciences
  2. Univ. of California, Berkeley, CA (United States). California Inst. for Quantitative Biosciences, Dept. of Molecular and Cell Biology, Helen Wills Neuroscience Inst.
  3. Univ. of California, Berkeley, CA (United States). California Inst. for Quantitative Biosciences, Dept. of Plant and Microbial Biology
  4. Univ. of California, Berkeley, CA (United States). Dept. of Plant and Microbial Biology, Dept. of Earth and Planetary Sciences, Dept. of Environmental Science, Policy, and Management
  5. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry. California Inst. for Quantitative Biosciences. Dept. of Molecular and Cell Biology. Innovative Genomics Inst. Howard Hughes Medical Inst.; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Division; Gladstone Inst., San Francisco, CA (United States). Gladstone Inst. of Data Science and Biotechnology
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1816040
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 12; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Wang, Joy Y., Hoel, Christopher M., Al-Shayeb, Basem, Banfield, Jillian F., Brohawn, Stephen G., and Doudna, Jennifer A. Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex. United States: N. p., 2021. Web. doi:10.1038/s41467-021-22900-y.
Wang, Joy Y., Hoel, Christopher M., Al-Shayeb, Basem, Banfield, Jillian F., Brohawn, Stephen G., & Doudna, Jennifer A. Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex. United States. https://doi.org/10.1038/s41467-021-22900-y
Wang, Joy Y., Hoel, Christopher M., Al-Shayeb, Basem, Banfield, Jillian F., Brohawn, Stephen G., and Doudna, Jennifer A. Thu . "Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex". United States. https://doi.org/10.1038/s41467-021-22900-y. https://www.osti.gov/servlets/purl/1816040.
@article{osti_1816040,
title = {Structural coordination between active sites of a CRISPR reverse transcriptase-integrase complex},
author = {Wang, Joy Y. and Hoel, Christopher M. and Al-Shayeb, Basem and Banfield, Jillian F. and Brohawn, Stephen G. and Doudna, Jennifer A.},
abstractNote = {CRISPR-Cas systems provide adaptive immunity in bacteria and archaea, beginning with integration of foreign sequences into the host CRISPR genomic locus and followed by transcription and maturation of CRISPR RNAs (crRNAs). In some CRISPR systems, a reverse transcriptase (RT) fusion to the Cas1 integrase and Cas6 maturase creates a single protein that enables concerted sequence integration and crRNA production. To elucidate how the RT-integrase organizes distinct enzymatic activities, we present the cryo-EM structure of a Cas6-RT-Cas1—Cas2 CRISPR integrase complex. The structure reveals a heterohexamer in which the RT directly contacts the integrase and maturase domains, suggesting functional coordination between all three active sites. Together with biochemical experiments, our data support a model of sequential enzymatic activities that enable CRISPR sequence acquisition from RNA and DNA substrates. These findings highlight an expanded capacity of some CRISPR systems to acquire diverse sequences that direct CRISPR-mediated interference.},
doi = {10.1038/s41467-021-22900-y},
journal = {Nature Communications},
number = 1,
volume = 12,
place = {United States},
year = {Thu May 06 00:00:00 EDT 2021},
month = {Thu May 06 00:00:00 EDT 2021}
}

Works referenced in this record:

How type II CRISPR–Cas establish immunity through Cas1–Cas2-mediated spacer integration
journal, September 2017


Comprehensive Phylogenetic Analysis of Bacterial Reverse Transcriptases
journal, November 2014


Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris
journal, November 2010

  • Samai, Poulami; Smith, Paul; Shuman, Stewart
  • Acta Crystallographica Section F Structural Biology and Crystallization Communications, Vol. 66, Issue 12
  • DOI: 10.1107/S1744309110039801

Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum
journal, November 2018


Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
journal, January 2012

  • Datsenko, Kirill A.; Pougach, Ksenia; Tikhonov, Anton
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1937

Spacer acquisition from RNA mediated by a natural reverse transcriptase-Cas1 fusion protein associated with a type III-D CRISPR–Cas system in Vibrio vulnificus
journal, September 2019

  • González-Delgado, Alejandro; Mestre, Mario Rodríguez; Martínez-Abarca, Francisco
  • Nucleic Acids Research, Vol. 47, Issue 19
  • DOI: 10.1093/nar/gkz746

Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease
journal, September 2010

  • Haurwitz, R. E.; Jinek, M.; Wiedenheft, B.
  • Science, Vol. 329, Issue 5997, p. 1355-1358
  • DOI: 10.1126/science.1192272

Structures of the CRISPR genome integration complex
journal, July 2017


MolProbity: More and better reference data for improved all-atom structure validation: PROTEIN SCIENCE.ORG
journal, November 2017

  • Williams, Christopher J.; Headd, Jeffrey J.; Moriarty, Nigel W.
  • Protein Science, Vol. 27, Issue 1
  • DOI: 10.1002/pro.3330

Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes
journal, August 2008

  • Brouns, S. J. J.; Jore, M. M.; Lundgren, M.
  • Science, Vol. 321, Issue 5891, p. 960-964
  • DOI: 10.1126/science.1159689

Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants
journal, December 2019

  • Makarova, Kira S.; Wolf, Yuri I.; Iranzo, Jaime
  • Nature Reviews Microbiology, Vol. 18, Issue 2
  • DOI: 10.1038/s41579-019-0299-x

Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix
journal, October 2019

  • Liebschner, Dorothee; Afonine, Pavel V.; Baker, Matthew L.
  • Acta Crystallographica Section D Structural Biology, Vol. 75, Issue 10
  • DOI: 10.1107/S2059798319011471

Short motif sequences determine the targets of the prokaryotic CRISPR defence system
journal, March 2009

  • Mojica, F. J. M.; Díez-Villaseñor, C.; García-Martínez, J.
  • Microbiology, Vol. 155, Issue 3, p. 733-740
  • DOI: 10.1099/mic.0.023960-0

A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition
journal, November 2018


CTFFIND4: Fast and accurate defocus estimation from electron micrographs
journal, November 2015


A diversity of uncharacterized reverse transcriptases in bacteria
journal, November 2008

  • Simon, Dawn M.; Zimmerly, Steven
  • Nucleic Acids Research, Vol. 36, Issue 22
  • DOI: 10.1093/nar/gkn867

A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis
journal, January 2019


CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes
journal, March 2007


New tools for automated high-resolution cryo-EM structure determination in RELION-3
journal, November 2018

  • Zivanov, Jasenko; Nakane, Takanori; Forsberg, Björn O.
  • eLife, Vol. 7
  • DOI: 10.7554/eLife.42166

Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases
journal, October 2013

  • Niewoehner, O.; Jinek, M.; Doudna, J. A.
  • Nucleic Acids Research, Vol. 42, Issue 2
  • DOI: 10.1093/nar/gkt922

Group II Introns: Mobile Ribozymes that Invade DNA
journal, May 2010


MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
journal, February 2017

  • Zheng, Shawn Q.; Palovcak, Eugene; Armache, Jean-Paul
  • Nature Methods, Vol. 14, Issue 4
  • DOI: 10.1038/nmeth.4193

Foreign DNA capture during CRISPR–Cas adaptive immunity
journal, October 2015

  • Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.
  • Nature, Vol. 527, Issue 7579
  • DOI: 10.1038/nature15760

RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex
journal, November 2009


UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084

MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability
journal, January 2013

  • Katoh, K.; Standley, D. M.
  • Molecular Biology and Evolution, Vol. 30, Issue 4
  • DOI: 10.1093/molbev/mst010

Transcriptional recording by CRISPR spacer acquisition from RNA
journal, October 2018


The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
journal, November 2010

  • Garneau, Josiane E.; Dupuis, Marie-Ève; Villion, Manuela
  • Nature, Vol. 468, Issue 7320
  • DOI: 10.1038/nature09523

A Functional Mini-Integrase in a Two-Protein Type V-C CRISPR System
journal, February 2019


CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli
journal, February 2013

  • Díez-Villaseñor, César; Guzmán, Noemí M.; Almendros, Cristóbal
  • RNA Biology, Vol. 10, Issue 5
  • DOI: 10.4161/rna.24023

Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems
journal, November 2015


EMAN2: An extensible image processing suite for electron microscopy
journal, January 2007

  • Tang, Guang; Peng, Liwei; Baldwin, Philip R.
  • Journal of Structural Biology, Vol. 157, Issue 1
  • DOI: 10.1016/j.jsb.2006.05.009

Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity
journal, May 2014

  • Nuñez, James K.; Kranzusch, Philip J.; Noeske, Jonas
  • Nature Structural & Molecular Biology, Vol. 21, Issue 6
  • DOI: 10.1038/nsmb.2820

Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity
journal, February 2015

  • Nuñez, James K.; Lee, Amy S. Y.; Engelman, Alan
  • Nature, Vol. 519, Issue 7542
  • DOI: 10.1038/nature14237

Detection and characterization of spacer integration intermediates in type I-E CRISPR–Cas system
journal, June 2014

  • Arslan, Zihni; Hermanns, Veronica; Wurm, Reinhild
  • Nucleic Acids Research, Vol. 42, Issue 12
  • DOI: 10.1093/nar/gku510

Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA
journal, March 2010

  • Mitchell, Meghan; Gillis, Andrew; Futahashi, Mizuko
  • Nature Structural & Molecular Biology, Vol. 17, Issue 4
  • DOI: 10.1038/nsmb.1777

Double-stranded Endonuclease Activity in Bacillus halodurans Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas2 Protein
journal, October 2012

  • Nam, Ki Hyun; Ding, Fran; Haitjema, Charles
  • Journal of Biological Chemistry, Vol. 287, Issue 43
  • DOI: 10.1074/jbc.M112.382598

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Systematic Survey for Novel Types of Prokaryotic Retroelements Based on Gene Neighborhood and Protein Architecture
journal, April 2008

  • Kojima, K. K.; Kanehisa, M.
  • Molecular Biology and Evolution, Vol. 25, Issue 7
  • DOI: 10.1093/molbev/msn081

Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness
journal, January 2017


An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference
journal, December 2014

  • Peng, Wenfang; Feng, Mingxia; Feng, Xu
  • Nucleic Acids Research, Vol. 43, Issue 1
  • DOI: 10.1093/nar/gku1302

UCSF ChimeraX: Meeting modern challenges in visualization and analysis: UCSF ChimeraX Visualization System
journal, September 2017

  • Goddard, Thomas D.; Huang, Conrad C.; Meng, Elaine C.
  • Protein Science, Vol. 27, Issue 1
  • DOI: 10.1002/pro.3235

Clades of huge phages from across Earth’s ecosystems
journal, February 2020


Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs
journal, October 2019


Cutting it close: CRISPR-associated endoribonuclease structure and function
journal, January 2015


Group II intron mobility occurs by target DNA-primed reverse transcription
journal, August 1995


Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting
journal, August 2014

  • Goldberg, Gregory W.; Jiang, Wenyan; Bikard, David
  • Nature, Vol. 514, Issue 7524
  • DOI: 10.1038/nature13637

Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
journal, February 2012

  • Yosef, Ido; Goren, Moran G.; Qimron, Udi
  • Nucleic Acids Research, Vol. 40, Issue 12
  • DOI: 10.1093/nar/gks216

Protecting genome integrity during CRISPR immune adaptation
journal, September 2016

  • Wright, Addison V.; Doudna, Jennifer A.
  • Nature Structural & Molecular Biology, Vol. 23, Issue 10
  • DOI: 10.1038/nsmb.3289

Essential Features and Rational Design of CRISPR RNAs that Function with the Cas RAMP Module Complex to Cleave RNAs
journal, February 2012


Recruitment of Reverse Transcriptase-Cas1 Fusion Proteins by Type VI-A CRISPR-Cas Systems
journal, September 2019

  • Toro, Nicolás; Mestre, Mario Rodríguez; Martínez-Abarca, Francisco
  • Frontiers in Microbiology, Vol. 10
  • DOI: 10.3389/fmicb.2019.02160

CRISPR-Cas immunity in prokaryotes
journal, October 2015


Molecular mechanisms of CRISPR–Cas spacer acquisition
journal, August 2018


Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein
journal, February 2016


Automated electron microscope tomography using robust prediction of specimen movements
journal, October 2005


Programmable RNA Shredding by the Type III-A CRISPR-Cas System of Streptococcus thermophilus
journal, November 2014


cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
journal, February 2017

  • Punjani, Ali; Rubinstein, John L.; Fleet, David J.
  • Nature Methods, Vol. 14, Issue 3
  • DOI: 10.1038/nmeth.4169

Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes
journal, December 2008


Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications
journal, December 2017


A Non-Stem-Loop CRISPR RNA Is Processed by Dual Binding Cas6
journal, April 2016