DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: How type II CRISPR–Cas establish immunity through Cas1–Cas2-mediated spacer integration

Abstract

CRISPR (clustered regularly interspaced short palindromic repeats) and the nearby Cas (CRISPR-associated) operon establish an RNA-based adaptive immunity system in prokaryotes. Molecular memory is created when a short foreign DNA-derived prespacer is integrated into the CRISPR array as a new spacer. Whereas the RNA-guided CRISPR interference mechanism varies widely among CRISPR–Cas systems, the spacer integration mechanism is essentially identical. The conserved Cas1 and Cas2 proteins form an integrase complex consisting of two distal Cas1 dimers bridged by a Cas2 dimer. The prespacer is bound by Cas1–Cas2 as a dual-forked DNA, and the terminal 3'-OH of each 3' overhang serves as an attacking nucleophile during integration. The prespacer is preferentially integrated into the leader-proximal region of the CRISPR array, guided by the leader sequence and a pair of inverted repeats inside the CRISPR repeat. Spacer integration in the well-studied Escherichia coli type I–E CRISPR system also relies on the bacterial integration host factor. In type II–A CRISPR, however, Cas1–Cas2 alone integrates spacers efficiently in vitro; other Cas proteins (such as Cas9 and Csn2) have accessory roles in the biogenesis phase of prespacers. Here we present four structural snapshots from the type II–A system of Enterococcus faecalis Cas1 and Cas2 during spacermore » integration. Enterococcus faecalis Cas1–Cas2 selectively binds to a splayed 30-base-pair prespacer bearing 4-nucleotide 3' overhangs. Three molecular events take place upon encountering a target: first, the Cas1–Cas2–prespacer complex searches for half-sites stochastically, then it preferentially interacts with the leader-side CRISPR repeat, and finally, it catalyses a nucleophilic attack that connects one strand of the leader-proximal repeat to the prespacer 3' overhang. Recognition of the spacer half-site requires DNA bending and leads to full integration. Here, we derive a mechanistic framework to explain the stepwise spacer integration process and the leader-proximal preference.« less

Authors:
 [1];  [1];  [2];  [1]
  1. Cornell Univ., Ithaca, NY (United States)
  2. Pohang Univ. of Science and Technology (South Korea)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE; NIH/NIGMS; National Science Foundation (NSF)
OSTI Identifier:
1430354
Grant/Contract Number:  
AC02-06CH11357; GM118174; GM102543; P41-GM103403; S10-RR029205; DMR-1332208; GM-103485
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 550; Journal Issue: 7674; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; DNA-binding proteins; Enzyme mechanisms; X-ray crystallography

Citation Formats

Xiao, Yibei, Ng, Sherwin, Nam, Ki Hyun, and Ke, Ailong. How type II CRISPR–Cas establish immunity through Cas1–Cas2-mediated spacer integration. United States: N. p., 2017. Web. doi:10.1038/nature24020.
Xiao, Yibei, Ng, Sherwin, Nam, Ki Hyun, & Ke, Ailong. How type II CRISPR–Cas establish immunity through Cas1–Cas2-mediated spacer integration. United States. https://doi.org/10.1038/nature24020
Xiao, Yibei, Ng, Sherwin, Nam, Ki Hyun, and Ke, Ailong. Mon . "How type II CRISPR–Cas establish immunity through Cas1–Cas2-mediated spacer integration". United States. https://doi.org/10.1038/nature24020. https://www.osti.gov/servlets/purl/1430354.
@article{osti_1430354,
title = {How type II CRISPR–Cas establish immunity through Cas1–Cas2-mediated spacer integration},
author = {Xiao, Yibei and Ng, Sherwin and Nam, Ki Hyun and Ke, Ailong},
abstractNote = {CRISPR (clustered regularly interspaced short palindromic repeats) and the nearby Cas (CRISPR-associated) operon establish an RNA-based adaptive immunity system in prokaryotes. Molecular memory is created when a short foreign DNA-derived prespacer is integrated into the CRISPR array as a new spacer. Whereas the RNA-guided CRISPR interference mechanism varies widely among CRISPR–Cas systems, the spacer integration mechanism is essentially identical. The conserved Cas1 and Cas2 proteins form an integrase complex consisting of two distal Cas1 dimers bridged by a Cas2 dimer. The prespacer is bound by Cas1–Cas2 as a dual-forked DNA, and the terminal 3'-OH of each 3' overhang serves as an attacking nucleophile during integration. The prespacer is preferentially integrated into the leader-proximal region of the CRISPR array, guided by the leader sequence and a pair of inverted repeats inside the CRISPR repeat. Spacer integration in the well-studied Escherichia coli type I–E CRISPR system also relies on the bacterial integration host factor. In type II–A CRISPR, however, Cas1–Cas2 alone integrates spacers efficiently in vitro; other Cas proteins (such as Cas9 and Csn2) have accessory roles in the biogenesis phase of prespacers. Here we present four structural snapshots from the type II–A system of Enterococcus faecalis Cas1 and Cas2 during spacer integration. Enterococcus faecalis Cas1–Cas2 selectively binds to a splayed 30-base-pair prespacer bearing 4-nucleotide 3' overhangs. Three molecular events take place upon encountering a target: first, the Cas1–Cas2–prespacer complex searches for half-sites stochastically, then it preferentially interacts with the leader-side CRISPR repeat, and finally, it catalyses a nucleophilic attack that connects one strand of the leader-proximal repeat to the prespacer 3' overhang. Recognition of the spacer half-site requires DNA bending and leads to full integration. Here, we derive a mechanistic framework to explain the stepwise spacer integration process and the leader-proximal preference.},
doi = {10.1038/nature24020},
journal = {Nature (London)},
number = 7674,
volume = 550,
place = {United States},
year = {Mon Sep 04 00:00:00 EDT 2017},
month = {Mon Sep 04 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 78 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

An updated evolutionary classification of CRISPR–Cas systems
journal, September 2015

  • Makarova, Kira S.; Wolf, Yuri I.; Alkhnbashi, Omer S.
  • Nature Reviews Microbiology, Vol. 13, Issue 11, p. 722-736
  • DOI: 10.1038/nrmicro3569

Asymmetric positioning of Cas1–2 complex and Integration Host Factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system
journal, November 2016

  • Yoganand, K. N. R.; Sivathanu, R.; Nimkar, Siddharth
  • Nucleic Acids Research, Vol. 45, Issue 1
  • DOI: 10.1093/nar/gkw1151

Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements
journal, February 2005

  • Mojica, Francisco J. M.; D�ez-Villase�or, Chc)sar; Garc�a-Mart�nez, Jes�s
  • Journal of Molecular Evolution, Vol. 60, Issue 2
  • DOI: 10.1007/s00239-004-0046-3

CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli
journal, February 2013

  • Díez-Villaseñor, César; Guzmán, Noemí M.; Almendros, Cristóbal
  • RNA Biology, Vol. 10, Issue 5
  • DOI: 10.4161/rna.24023

Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems
journal, November 2015


Refinement of Macromolecular Structures by the Maximum-Likelihood Method
journal, May 1997

  • Murshudov, G. N.; Vagin, A. A.; Dodson, E. J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 53, Issue 3
  • DOI: 10.1107/S0907444996012255

Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910045749

Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity
journal, May 2014

  • Nuñez, James K.; Kranzusch, Philip J.; Noeske, Jonas
  • Nature Structural & Molecular Biology, Vol. 21, Issue 6
  • DOI: 10.1038/nsmb.2820

CRISPR Immunological Memory Requires a Host Factor for Specificity
journal, June 2016


Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices
journal, November 1994


Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity
journal, February 2015

  • Nuñez, James K.; Lee, Amy S. Y.; Engelman, Alan
  • Nature, Vol. 519, Issue 7542
  • DOI: 10.1038/nature14237

Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

Deciphering key features in protein structures with the new ENDscript server
journal, April 2014

  • Robert, Xavier; Gouet, Patrice
  • Nucleic Acids Research, Vol. 42, Issue W1
  • DOI: 10.1093/nar/gku316

Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus
journal, January 2015

  • Wei, Yunzhou; Chesne, Megan T.; Terns, Rebecca M.
  • Nucleic Acids Research, Vol. 43, Issue 3
  • DOI: 10.1093/nar/gku1407

Nucleases: diversity of structure, function and mechanism
journal, September 2010


Recognition of Specific DNA Sequences
journal, November 2001


PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Short motif sequences determine the targets of the prokaryotic CRISPR defence system
journal, March 2009

  • Mojica, F. J. M.; Díez-Villaseñor, C.; García-Martínez, J.
  • Microbiology, Vol. 155, Issue 3, p. 733-740
  • DOI: 10.1099/mic.0.023960-0

CRISPR-Cas: Adapting to change
journal, April 2017

  • Jackson, Simon A.; McKenzie, Rebecca E.; Fagerlund, Robert D.
  • Science, Vol. 356, Issue 6333
  • DOI: 10.1126/science.aal5056

Self versus non-self discrimination during CRISPR RNA-directed immunity
journal, January 2010

  • Marraffini, Luciano A.; Sontheimer, Erik J.
  • Nature, Vol. 463, Issue 7280
  • DOI: 10.1038/nature08703

DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica
journal, April 2016

  • Wang, Rui; Li, Ming; Gong, Luyao
  • Nucleic Acids Research, Vol. 44, Issue 9
  • DOI: 10.1093/nar/gkw260

Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega
journal, January 2011

  • Sievers, Fabian; Wilm, Andreas; Dineen, David
  • Molecular Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1038/msb.2011.75

CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes
journal, March 2007


Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
journal, February 2012

  • Yosef, Ido; Goren, Moran G.; Qimron, Udi
  • Nucleic Acids Research, Vol. 40, Issue 12
  • DOI: 10.1093/nar/gks216

Experimental phasing with SHELXC / D / E : combining chain tracing with density modification
journal, March 2010

  • Sheldrick, George M.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444909038360

Protecting genome integrity during CRISPR immune adaptation
journal, September 2016

  • Wright, Addison V.; Doudna, Jennifer A.
  • Nature Structural & Molecular Biology, Vol. 23, Issue 10
  • DOI: 10.1038/nsmb.3289

Cas9 specifies functional viral targets during CRISPR–Cas adaptation
journal, February 2015

  • Heler, Robert; Samai, Poulami; Modell, Joshua W.
  • Nature, Vol. 519, Issue 7542
  • DOI: 10.1038/nature14245

Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems
journal, November 2015


Foreign DNA capture during CRISPR–Cas adaptive immunity
journal, October 2015

  • Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.
  • Nature, Vol. 527, Issue 7579
  • DOI: 10.1038/nature15760

Repeat Size Determination by Two Molecular Rulers in the Type I-E CRISPR Array
journal, September 2016


CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA
journal, December 2008


CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration
journal, November 2016


[20] Processing of X-ray diffraction data collected in oscillation mode
book, January 1997


CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria
journal, July 2017

  • Shipman, Seth L.; Nivala, Jeff; Macklis, Jeffrey D.
  • Nature, Vol. 547, Issue 7663
  • DOI: 10.1038/nature23017

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition
journal, August 2015

  • Rollie, Clare; Schneider, Stefanie; Brinkmann, Anna Sophie
  • eLife, Vol. 4
  • DOI: 10.7554/eLife.08716

Foreign DNA capture during CRISPR–Cas adaptive immunity
journal, June 2016

  • Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.
  • Nature, Vol. 534, Issue 7607
  • DOI: 10.1038/nature18911

Cryo-EM structure of the respiratory syncytial virus RNA polymerase
journal, January 2020


Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation
journal, February 2021


Overview of the CCP4 suite and current developments.
text, January 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.52322

PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems
journal, November 2015


Repeat Size Determination by Two Molecular Rulers in the Type I-E CRISPR Array
journal, September 2016


Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems
journal, November 2015


CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration
journal, November 2016


Self versus non-self discrimination during CRISPR RNA-directed immunity
journal, January 2010

  • Marraffini, Luciano A.; Sontheimer, Erik J.
  • Nature, Vol. 463, Issue 7280
  • DOI: 10.1038/nature08703

CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria
journal, July 2017

  • Shipman, Seth L.; Nivala, Jeff; Macklis, Jeffrey D.
  • Nature, Vol. 547, Issue 7663
  • DOI: 10.1038/nature23017

Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity
journal, May 2014

  • Nuñez, James K.; Kranzusch, Philip J.; Noeske, Jonas
  • Nature Structural & Molecular Biology, Vol. 21, Issue 6
  • DOI: 10.1038/nsmb.2820

Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
journal, February 2012

  • Yosef, Ido; Goren, Moran G.; Qimron, Udi
  • Nucleic Acids Research, Vol. 40, Issue 12
  • DOI: 10.1093/nar/gks216

Deciphering key features in protein structures with the new ENDscript server
journal, April 2014

  • Robert, Xavier; Gouet, Patrice
  • Nucleic Acids Research, Vol. 42, Issue W1
  • DOI: 10.1093/nar/gku316

CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA
journal, December 2008


Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices
journal, November 1994


CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli
journal, February 2013

  • Díez-Villaseñor, César; Guzmán, Noemí M.; Almendros, Cristóbal
  • RNA Biology, Vol. 10, Issue 5
  • DOI: 10.4161/rna.24023

Works referencing / citing this record:

Molecular mechanisms of CRISPR–Cas spacer acquisition
journal, August 2018


How mouse RAG recombinase avoids DNA transposition
journal, February 2020

  • Chen, Xuemin; Cui, Yanxiang; Wang, Huaibin
  • Nature Structural & Molecular Biology, Vol. 27, Issue 2
  • DOI: 10.1038/s41594-019-0366-z

Detection of CRISPR adaptation
journal, February 2020

  • Shiriaeva, Anna; Fedorov, Ivan; Vyhovskyi, Danylo
  • Biochemical Society Transactions, Vol. 48, Issue 1
  • DOI: 10.1042/bst20190662

Adaptation processes that build CRISPR immunity: creative destruction, updated
journal, June 2019

  • Lau, Chun H.; Reeves, Ryan; Bolt, Edward L.
  • Essays in Biochemistry, Vol. 63, Issue 2
  • DOI: 10.1042/ebc20180073

Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis
journal, May 2018

  • Shmakov, Sergey A.; Makarova, Kira S.; Wolf, Yuri I.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 23
  • DOI: 10.1073/pnas.1803440115

Fidelity of prespacer capture and processing is governed by the PAM-mediated interactions of Cas1-2 adaptation complex in CRISPR-Cas type I-E system
journal, November 2019

  • Yoganand, Kakimani Nagarajan; Muralidharan, Manasasri; Nimkar, Siddharth
  • Journal of Biological Chemistry, Vol. 294, Issue 52
  • DOI: 10.1074/jbc.ra119.009438

CRISPR-Cas systems in multicellular cyanobacteria
journal, August 2018


Conserved motifs in the CRISPR leader sequence control spacer acquisition levels in Type I-D CRISPR-Cas systems
journal, June 2019

  • Kieper, Sebastian N.; Almendros, Cristóbal; Brouns, Stan J. J.
  • FEMS Microbiology Letters, Vol. 366, Issue 11
  • DOI: 10.1093/femsle/fnz129

Prespacer processing and specific integration in a Type I-A CRISPR system
journal, December 2017

  • Rollie, Clare; Graham, Shirley; Rouillon, Christophe
  • Nucleic Acids Research, Vol. 46, Issue 3
  • DOI: 10.1093/nar/gkx1232

Molecular organization of the type II-A CRISPR adaptation module and its interaction with Cas9 via Csn2
journal, August 2018

  • Ka, Donghyun; Jang, Dong Man; Han, Byung Woo
  • Nucleic Acids Research, Vol. 46, Issue 18
  • DOI: 10.1093/nar/gky702

Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond
journal, September 2019


DnaQ exonuclease‐like domain of Cas2 promotes spacer integration in a type I‐E CRISPR‐Cas system
journal, May 2018

  • Drabavicius, Gediminas; Sinkunas, Tomas; Silanskas, Arunas
  • EMBO reports, Vol. 19, Issue 7
  • DOI: 10.15252/embr.201745543

The Cas4-Cas1-Cas2 complex mediates precise prespacer processing during CRISPR adaptation
journal, April 2019


Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas
journal, January 2020


Probing the Behaviour of Cas1-Cas2 upon Protospacer Binding in CRISPR-Cas Systems using Molecular Dynamics Simulations
journal, February 2019


Detection of CRISPR adaptation
journal, February 2020

  • Shiriaeva, Anna; Fedorov, Ivan; Vyhovskyi, Danylo
  • Biochemical Society Transactions, Vol. 48, Issue 1
  • DOI: 10.1042/bst20190662

Conserved motifs in the CRISPR leader sequence control spacer acquisition levels in Type I-D CRISPR-Cas systems
journal, June 2019

  • Kieper, Sebastian N.; Almendros, Cristóbal; Brouns, Stan J. J.
  • FEMS Microbiology Letters, Vol. 366, Issue 11
  • DOI: 10.1093/femsle/fnz129

Primed CRISPR adaptation in Escherichia coli cells does not depend on conformational changes in the Cascade effector complex detected in Vitro
journal, March 2018

  • Krivoy, Andrey; Rutkauskas, Marius; Kuznedelov, Konstantin
  • Nucleic Acids Research, Vol. 46, Issue 8
  • DOI: 10.1093/nar/gky219

Molecular organization of the type II-A CRISPR adaptation module and its interaction with Cas9 via Csn2
journal, August 2018

  • Ka, Donghyun; Jang, Dong Man; Han, Byung Woo
  • Nucleic Acids Research, Vol. 46, Issue 18
  • DOI: 10.1093/nar/gky702

CRISPR repeat sequences and relative spacing specify DNA integration by Pyrococcus furiosus Cas1 and Cas2
journal, June 2019

  • Grainy, Julie; Garrett, Sandra; Graveley, Brenton R.
  • Nucleic Acids Research, Vol. 47, Issue 14
  • DOI: 10.1093/nar/gkz548

CRISPR DNA elements controlling site-specific spacer integration and proper repeat length by a Type II CRISPR–Cas system
journal, August 2019

  • Kim, Jenny G.; Garrett, Sandra; Wei, Yunzhou
  • Nucleic Acids Research, Vol. 47, Issue 16
  • DOI: 10.1093/nar/gkz677

DnaQ exonuclease‐like domain of Cas2 promotes spacer integration in a type I‐E CRISPR‐Cas system
journal, May 2018

  • Drabavicius, Gediminas; Sinkunas, Tomas; Silanskas, Arunas
  • EMBO reports, Vol. 19, Issue 7
  • DOI: 10.15252/embr.201745543

Cas1 and Cas2 From the Type II-C CRISPR-Cas System of Riemerella anatipestifer Are Required for Spacer Acquisition
journal, June 2018

  • He, Yang; Wang, Mingshu; Liu, Mafeng
  • Frontiers in Cellular and Infection Microbiology, Vol. 8
  • DOI: 10.3389/fcimb.2018.00195

Cas3 Protein—A Review of a Multi-Tasking Machine
journal, February 2020


The Cas4-Cas1-Cas2 complex mediates precise prespacer processing during CRISPR adaptation
journal, April 2019


Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas
journal, January 2020