DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas

Abstract

Key to CRISPR-Cas adaptive immunity is maintaining an ongoing record of invading nucleic acids, a process carried out by the Cas1-Cas2 complex that integrates short segments of foreign genetic material (spacers) into the CRISPR locus. It is hypothesized that Cas1 evolved from casposases, a novel class of transposases. We show here that the Methanosarcina mazei casposase can integrate varied forms of the casposon end in vitro, and recapitulates several properties of CRISPR-Cas integrases including site-specificity. The X-ray structure of the casposase bound to DNA representing the product of integration reveals a tetramer with target DNA bound snugly between two dimers in which single-stranded casposon end binding resembles that of spacer 3'-overhangs. The differences between transposase and CRISPR-Cas integrase are largely architectural, and it appears that evolutionary change involved changes in protein-protein interactions to favor Cas2 binding over tetramerization; this in turn led to preferred integration of single spacers over two transposon ends.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2];  [2]; ORCiD logo [1]
  1. National Institutes of Health (NIH), Bethesda, MD (United States). Lab. of Molecular Biology. National Inst. of Diabetes and Digestive and Kidney Diseases
  2. National Institutes of Health (NIH), Bethesda, MD (United States). Lab. of Cell and Molecular Biology. National Inst. of Diabetes and Digestive and Kidney Diseases
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1833697
Resource Type:
Accepted Manuscript
Journal Name:
eLife
Additional Journal Information:
Journal Volume: 9; Journal ID: ISSN 2050-084X
Publisher:
eLife Sciences Publications, Ltd.
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Hickman, Alison B., Kailasan, Shweta, Genzor, Pavol, Haase, Astrid D., and Dyda, Fred. Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas. United States: N. p., 2020. Web. doi:10.7554/elife.50004.
Hickman, Alison B., Kailasan, Shweta, Genzor, Pavol, Haase, Astrid D., & Dyda, Fred. Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas. United States. https://doi.org/10.7554/elife.50004
Hickman, Alison B., Kailasan, Shweta, Genzor, Pavol, Haase, Astrid D., and Dyda, Fred. Wed . "Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas". United States. https://doi.org/10.7554/elife.50004. https://www.osti.gov/servlets/purl/1833697.
@article{osti_1833697,
title = {Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas},
author = {Hickman, Alison B. and Kailasan, Shweta and Genzor, Pavol and Haase, Astrid D. and Dyda, Fred},
abstractNote = {Key to CRISPR-Cas adaptive immunity is maintaining an ongoing record of invading nucleic acids, a process carried out by the Cas1-Cas2 complex that integrates short segments of foreign genetic material (spacers) into the CRISPR locus. It is hypothesized that Cas1 evolved from casposases, a novel class of transposases. We show here that the Methanosarcina mazei casposase can integrate varied forms of the casposon end in vitro, and recapitulates several properties of CRISPR-Cas integrases including site-specificity. The X-ray structure of the casposase bound to DNA representing the product of integration reveals a tetramer with target DNA bound snugly between two dimers in which single-stranded casposon end binding resembles that of spacer 3'-overhangs. The differences between transposase and CRISPR-Cas integrase are largely architectural, and it appears that evolutionary change involved changes in protein-protein interactions to favor Cas2 binding over tetramerization; this in turn led to preferred integration of single spacers over two transposon ends.},
doi = {10.7554/elife.50004},
journal = {eLife},
number = ,
volume = 9,
place = {United States},
year = {Wed Jan 08 00:00:00 EST 2020},
month = {Wed Jan 08 00:00:00 EST 2020}
}

Works referenced in this record:

How type II CRISPR–Cas establish immunity through Cas1–Cas2-mediated spacer integration
journal, September 2017


Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity
journal, May 2014


Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back
journal, September 2017

  • Koonin, Eugene V.; Makarova, Kira S.
  • Genome Biology and Evolution, Vol. 9, Issue 10
  • DOI: 10.1093/gbe/evx192

Overview of the CCP 4 suite and current developments
journal, March 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910045749

Spacer capture and integration by a type I-F Cas1–Cas2-3 CRISPR adaptation complex
journal, June 2017

  • Fagerlund, Robert D.; Wilkinson, Max E.; Klykov, Oleg
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1618421114

Adaptation in CRISPR-Cas Systems
journal, March 2016


Structures of the CRISPR genome integration complex
journal, July 2017


The mechanism of retroviral integration from X-ray structures of its key intermediates
journal, November 2010

  • Maertens, Goedele N.; Hare, Stephen; Cherepanov, Peter
  • Nature, Vol. 468, Issue 7321
  • DOI: 10.1038/nature09517

Quantitative mass imaging of single biological macromolecules
journal, April 2018


CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes
journal, March 2007


Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0
journal, October 2003

  • Bricogne, G.; Vonrhein, C.; Flensburg, C.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 59, Issue 11
  • DOI: 10.1107/S0907444903017694

Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems
journal, September 2016

  • Béguin, Pierre; Charpin, Nicole; Koonin, Eugene V.
  • Nucleic Acids Research
  • DOI: 10.1093/nar/gkw821

Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems
journal, November 2015


Foreign DNA capture during CRISPR–Cas adaptive immunity
journal, October 2015

  • Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.
  • Nature, Vol. 527, Issue 7579
  • DOI: 10.1038/nature15760

Inference of Macromolecular Assemblies from Crystalline State
journal, September 2007


Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
journal, August 2016

  • Mohanraju, Prarthana; Makarova, Kira S.; Zetsche, Bernd
  • Science, Vol. 353, Issue 6299
  • DOI: 10.1126/science.aad5147

A Functional Mini-Integrase in a Two-Protein Type V-C CRISPR System
journal, February 2019


Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition
journal, August 2015

  • Rollie, Clare; Schneider, Stefanie; Brinkmann, Anna Sophie
  • eLife, Vol. 4
  • DOI: 10.7554/eLife.08716

RAG1 Core and V(D)J Recombination Signal Sequences Were Derived from Transib Transposons
journal, May 2005


Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems
journal, November 2015


CRISPR–Cas adaptation: insights into the mechanism of action
journal, January 2016


The Mu transpososome structure sheds light on DDE recombinase evolution
journal, November 2012

  • Montaño, Sherwin P.; Pigli, Ying Z.; Rice, Phoebe A.
  • Nature, Vol. 491, Issue 7424
  • DOI: 10.1038/nature11602

Characterizing leader sequences of CRISPR loci
journal, September 2016


Prespacer processing and specific integration in a Type I-A CRISPR system
journal, December 2017

  • Rollie, Clare; Graham, Shirley; Rouillon, Christophe
  • Nucleic Acids Research, Vol. 46, Issue 3
  • DOI: 10.1093/nar/gkx1232

Sequence motifs recognized by the casposon integrase of Aciduliprofundum boonei
journal, May 2019

  • Béguin, Pierre; Chekli, Yankel; Sezonov, Guennadi
  • Nucleic Acids Research, Vol. 47, Issue 12
  • DOI: 10.1093/nar/gkz447

New insights into the evolutionary origins of the recombination‐activating gene proteins and V(D)J recombination
journal, January 2017

  • Carmona, Lina Marcela; Schatz, David G.
  • The FEBS Journal, Vol. 284, Issue 11
  • DOI: 10.1111/febs.13990

Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity
journal, January 2016

  • Krupovic, Mart; Shmakov, Sergey; Makarova, Kira S.
  • Genome Biology and Evolution, Vol. 8, Issue 2
  • DOI: 10.1093/gbe/evw006

Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity
journal, May 2014

  • Nuñez, James K.; Kranzusch, Philip J.; Noeske, Jonas
  • Nature Structural & Molecular Biology, Vol. 21, Issue 6
  • DOI: 10.1038/nsmb.2820

CRISPR Immunological Memory Requires a Host Factor for Specificity
journal, June 2016


Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity
journal, February 2015

  • Nuñez, James K.; Lee, Amy S. Y.; Engelman, Alan
  • Nature, Vol. 519, Issue 7542
  • DOI: 10.1038/nature14237

Transposases are the most abundant, most ubiquitous genes in nature
journal, March 2010

  • Aziz, Ramy K.; Breitbart, Mya; Edwards, Robert A.
  • Nucleic Acids Research, Vol. 38, Issue 13
  • DOI: 10.1093/nar/gkq140

Structural Basis for DNase Activity of a Conserved Protein Implicated in CRISPR-Mediated Genome Defense
journal, June 2009


PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications
journal, November 2015

  • Hickman, Alison B.; Dyda, Fred
  • Nucleic Acids Research, Vol. 43, Issue 22
  • DOI: 10.1093/nar/gkv1180

Classification and Nomenclature of CRISPR-Cas Systems: Where from Here?
journal, October 2018


CRISPR-Cas: Adapting to change
journal, April 2017

  • Jackson, Simon A.; McKenzie, Rebecca E.; Fagerlund, Robert D.
  • Science, Vol. 356, Issue 6333
  • DOI: 10.1126/science.aal5056

Version 1.2 of the Crystallography and NMR system
journal, October 2007


Mechanism of IS200/IS605 Family DNA Transposases: Activation and Transposon-Directed Target Site Selection
journal, January 2008


Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery
journal, August 2017


Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
journal, February 2012

  • Yosef, Ido; Goren, Moran G.; Qimron, Udi
  • Nucleic Acids Research, Vol. 40, Issue 12
  • DOI: 10.1093/nar/gks216

Crystal structure of Cas1 from Archaeoglobus fulgidus and characterization of its nucleolytic activity
journal, November 2013

  • Kim, Tae-Yang; Shin, Minsang; Huynh Thi Yen, Ly
  • Biochemical and Biophysical Research Communications, Vol. 441, Issue 4
  • DOI: 10.1016/j.bbrc.2013.10.122

V(D)J Recombination: Mechanisms of Initiation
journal, December 2011


CRISPR-Cas immunity in prokaryotes
journal, October 2015


Molecular mechanisms of CRISPR–Cas spacer acquisition
journal, August 2018


Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein
journal, February 2016


CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration
journal, November 2016


CRISPR–Cas in mobile genetic elements: counter-defence and beyond
journal, June 2019

  • Faure, Guilhem; Shmakov, Sergey A.; Yan, Winston X.
  • Nature Reviews Microbiology, Vol. 17, Issue 8
  • DOI: 10.1038/s41579-019-0204-7

New CRISPR–Cas systems from uncultivated microbes
journal, December 2016

  • Burstein, David; Harrington, Lucas B.; Strutt, Steven C.
  • Nature, Vol. 542, Issue 7640
  • DOI: 10.1038/nature21059

PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

Overview of the CCP4 suite and current developments.
text, January 2011

  • Winn, Martyn D.; Ballard, Charles C.; Cowtan, Kevin D.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.52322

Mechanism of IS200/IS605 Family DNA Transposases: Activation and Transposon-Directed Target Site Selection
journal, January 2008


Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems
journal, November 2015


Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery
journal, August 2017


Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems
journal, November 2015


Adaptation in CRISPR-Cas Systems
journal, March 2016


CRISPR Immunological Memory Requires a Host Factor for Specificity
journal, June 2016


CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration
journal, November 2016


Structural Basis for DNase Activity of a Conserved Protein Implicated in CRISPR-Mediated Genome Defense
journal, June 2009


Advances in direct methods for protein crystallography
journal, October 1999


The mechanism of retroviral integration from X-ray structures of its key intermediates
journal, November 2010

  • Maertens, Goedele N.; Hare, Stephen; Cherepanov, Peter
  • Nature, Vol. 468, Issue 7321
  • DOI: 10.1038/nature09517

Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity
journal, February 2015

  • Nuñez, James K.; Lee, Amy S. Y.; Engelman, Alan
  • Nature, Vol. 519, Issue 7542
  • DOI: 10.1038/nature14237

CRISPR-Cas immunity in prokaryotes
journal, October 2015


Foreign DNA capture during CRISPR–Cas adaptive immunity
journal, June 2016

  • Nuñez, James K.; Harrington, Lucas B.; Kranzusch, Philip J.
  • Nature, Vol. 534, Issue 7607
  • DOI: 10.1038/nature18911

New CRISPR–Cas systems from uncultivated microbes
journal, December 2016

  • Burstein, David; Harrington, Lucas B.; Strutt, Steven C.
  • Nature, Vol. 542, Issue 7640
  • DOI: 10.1038/nature21059

How type II CRISPR–Cas establish immunity through Cas1–Cas2-mediated spacer integration
journal, September 2017


Version 1.2 of the Crystallography and NMR system
journal, October 2007


CRISPR–Cas adaptation: insights into the mechanism of action
journal, January 2016


Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity
journal, May 2014

  • Nuñez, James K.; Kranzusch, Philip J.; Noeske, Jonas
  • Nature Structural & Molecular Biology, Vol. 21, Issue 6
  • DOI: 10.1038/nsmb.2820

Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion
journal, September 2020


The basic building blocks and evolution of CRISPR–Cas systems
journal, November 2013

  • Makarova, Kira S.; Wolf, Yuri I.; Koonin, Eugene V.
  • Biochemical Society Transactions, Vol. 41, Issue 6
  • DOI: 10.1042/bst20130038

Spacer capture and integration by a type I-F Cas1–Cas2-3 CRISPR adaptation complex
journal, June 2017

  • Fagerlund, Robert D.; Wilkinson, Max E.; Klykov, Oleg
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1618421114

Classification and Nomenclature of CRISPR-Cas Systems: Where from Here?
journal, October 2018


Characterizing leader sequences of CRISPR loci
journal, September 2016


Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity
journal, January 2016

  • Krupovic, Mart; Shmakov, Sergey; Makarova, Kira S.
  • Genome Biology and Evolution, Vol. 8, Issue 2
  • DOI: 10.1093/gbe/evw006

Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back
journal, September 2017

  • Koonin, Eugene V.; Makarova, Kira S.
  • Genome Biology and Evolution, Vol. 9, Issue 10
  • DOI: 10.1093/gbe/evx192

Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
journal, February 2012

  • Yosef, Ido; Goren, Moran G.; Qimron, Udi
  • Nucleic Acids Research, Vol. 40, Issue 12
  • DOI: 10.1093/nar/gks216

The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications
journal, November 2015

  • Hickman, Alison B.; Dyda, Fred
  • Nucleic Acids Research, Vol. 43, Issue 22
  • DOI: 10.1093/nar/gkv1180

Sequence motifs recognized by the casposon integrase of Aciduliprofundum boonei
journal, May 2019

  • Béguin, Pierre; Chekli, Yankel; Sezonov, Guennadi
  • Nucleic Acids Research, Vol. 47, Issue 12
  • DOI: 10.1093/nar/gkz447

Zero-dose extrapolation as part of macromolecular synchrotron data reduction
journal, April 2003

  • Diederichs, Kay; McSweeney, Sean; Ravelli, Raimond B. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 59, Issue 5
  • DOI: 10.1107/s0907444903006516

New insights into the evolutionary origins of the recombination‐activating gene proteins and V(D)J recombination
journal, January 2017

  • Carmona, Lina Marcela; Schatz, David G.
  • The FEBS Journal, Vol. 284, Issue 11
  • DOI: 10.1111/febs.13990

CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes
journal, March 2007


Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein
journal, February 2016


Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
journal, August 2016

  • Mohanraju, Prarthana; Makarova, Kira S.; Zetsche, Bernd
  • Science, Vol. 353, Issue 6299
  • DOI: 10.1126/science.aad5147

CRISPR-Cas: Adapting to change
journal, April 2017

  • Jackson, Simon A.; McKenzie, Rebecca E.; Fagerlund, Robert D.
  • Science, Vol. 356, Issue 6333
  • DOI: 10.1126/science.aal5056

Structures of the CRISPR genome integration complex
journal, July 2017


Everyman's Guide to Bacterial Insertion Sequences
journal, April 2015


RAG1 Core and V(D)J Recombination Signal Sequences Were Derived from Transib Transposons
journal, May 2005


Works referencing / citing this record:

The CARF Protein MM_0565 Affects Transcription of the Casposon-Encoded cas1-solo Gene in Methanosarcina mazei Gö1
journal, August 2020

  • Ulbricht, Andrea; Nickel, Lisa; Weidenbach, Katrin
  • Biomolecules, Vol. 10, Issue 8
  • DOI: 10.3390/biom10081161