DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation

Abstract

Carboxysomes are bacterial microcompartments that function as the centerpiece of the bacterial CO2-concentrating mechanism by facilitating high CO2 concentrations near the carboxylase Rubisco. The carboxysome self-assembles from thousands of individual proteins into icosahedral-like particles with a dense enzyme cargo encapsulated within a proteinaceous shell. In the case of the α-carboxysome, there is little molecular insight into protein–protein interactions that drive the assembly process. In this work, studies on the α-carboxysome from Halothiobacillus neapolitanus demonstrate that Rubisco interacts with the N terminus of CsoS2, a multivalent, intrinsically disordered protein. X-ray structural analysis of the CsoS2 interaction motif bound to Rubisco reveals a series of conserved electrostatic interactions that are only made with properly assembled hexadecameric Rubisco. Although biophysical measurements indicate that this single interaction is weak, its implicit multivalency induces high-affinity binding through avidity. Taken together, our results indicate that CsoS2 acts as an interaction hub to condense Rubisco and enable efficient α-carboxysome formation.

Authors:
 [1];  [1]; ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of California, Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States). California Inst. for Quantitative Biosciences
Publication Date:
Research Org.:
University of California, Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); University of California; National Institutes of Health (NIH)
OSTI Identifier:
1802884
Grant/Contract Number:  
SC0016240; MR-15-328599; R01 GM124149; P30 GM124169; R01GM129241; R01GM050945
Resource Type:
Accepted Manuscript
Journal Name:
Nature Structural & Molecular Biology
Additional Journal Information:
Journal Volume: 27; Journal Issue: 3; Journal ID: ISSN 1545-9993
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Biochemistry & molecular biology; Biophysics; Cell biology; Proteins; X-ray crystallography

Citation Formats

Oltrogge, Luke M., Chaijarasphong, Thawatchai, Chen, Allen W., Bolin, Eric R., Marqusee, Susan, and Savage, David F. Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation. United States: N. p., 2020. Web. doi:10.1038/s41594-020-0387-7.
Oltrogge, Luke M., Chaijarasphong, Thawatchai, Chen, Allen W., Bolin, Eric R., Marqusee, Susan, & Savage, David F. Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation. United States. https://doi.org/10.1038/s41594-020-0387-7
Oltrogge, Luke M., Chaijarasphong, Thawatchai, Chen, Allen W., Bolin, Eric R., Marqusee, Susan, and Savage, David F. Mon . "Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation". United States. https://doi.org/10.1038/s41594-020-0387-7. https://www.osti.gov/servlets/purl/1802884.
@article{osti_1802884,
title = {Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation},
author = {Oltrogge, Luke M. and Chaijarasphong, Thawatchai and Chen, Allen W. and Bolin, Eric R. and Marqusee, Susan and Savage, David F.},
abstractNote = {Carboxysomes are bacterial microcompartments that function as the centerpiece of the bacterial CO2-concentrating mechanism by facilitating high CO2 concentrations near the carboxylase Rubisco. The carboxysome self-assembles from thousands of individual proteins into icosahedral-like particles with a dense enzyme cargo encapsulated within a proteinaceous shell. In the case of the α-carboxysome, there is little molecular insight into protein–protein interactions that drive the assembly process. In this work, studies on the α-carboxysome from Halothiobacillus neapolitanus demonstrate that Rubisco interacts with the N terminus of CsoS2, a multivalent, intrinsically disordered protein. X-ray structural analysis of the CsoS2 interaction motif bound to Rubisco reveals a series of conserved electrostatic interactions that are only made with properly assembled hexadecameric Rubisco. Although biophysical measurements indicate that this single interaction is weak, its implicit multivalency induces high-affinity binding through avidity. Taken together, our results indicate that CsoS2 acts as an interaction hub to condense Rubisco and enable efficient α-carboxysome formation.},
doi = {10.1038/s41594-020-0387-7},
journal = {Nature Structural & Molecular Biology},
number = 3,
volume = 27,
place = {United States},
year = {Mon Mar 02 00:00:00 EST 2020},
month = {Mon Mar 02 00:00:00 EST 2020}
}

Works referenced in this record:

Clustal Omega for making accurate alignments of many protein sequences: Clustal Omega for Many Protein Sequences
journal, October 2017

  • Sievers, Fabian; Higgins, Desmond G.
  • Protein Science, Vol. 27, Issue 1
  • DOI: 10.1002/pro.3290

A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins
journal, July 2018


Attributes of short linear motifs
journal, January 2012

  • Davey, Norman E.; Van Roey, Kim; Weatheritt, Robert J.
  • Mol. BioSyst., Vol. 8, Issue 1
  • DOI: 10.1039/C1MB05231D

Protein Phase Separation: A New Phase in Cell Biology
journal, June 2018

  • Boeynaems, Steven; Alberti, Simon; Fawzi, Nicolas L.
  • Trends in Cell Biology, Vol. 28, Issue 6
  • DOI: 10.1016/j.tcb.2018.02.004

Cation-pi interactions in structural biology
journal, August 1999

  • Gallivan, J. P.; Dougherty, D. A.
  • Proceedings of the National Academy of Sciences, Vol. 96, Issue 17
  • DOI: 10.1073/pnas.96.17.9459

The Eukaryotic CO2-Concentrating Organelle Is Liquid-like and Exhibits Dynamic Reorganization
journal, September 2017


A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle
journal, May 2016

  • Mackinder, Luke C. M.; Meyer, Moritz T.; Mettler-Altmann, Tabea
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 21
  • DOI: 10.1073/pnas.1522866113

Functions, Compositions, and Evolution of the Two Types of Carboxysomes: Polyhedral Microcompartments That Facilitate CO2 Fixation in Cyanobacteria and Some Proteobacteria
journal, September 2013

  • Rae, B. D.; Long, B. M.; Badger, M. R.
  • Microbiology and Molecular Biology Reviews, Vol. 77, Issue 3
  • DOI: 10.1128/MMBR.00061-12

Functional Cyanobacterial β -Carboxysomes Have an Absolute Requirement for Both Long and Short Forms of the CcmM Protein
journal, March 2010

  • Long, Benedict M.; Tucker, Loraine; Badger, Murray R.
  • Plant Physiology, Vol. 153, Issue 1
  • DOI: 10.1104/pp.110.154948

Proteomic analysis of the CO 2 -concentrating mechanism in the open-ocean cyanobacterium Synechococcus WH8102
journal, July 2005

  • Gonzales, Arlene D.; Light, Yooli K.; Zhang, Zhaoduo
  • Canadian Journal of Botany, Vol. 83, Issue 7
  • DOI: 10.1139/b05-056

How good are my data and what is the resolution?
journal, June 2013

  • Evans, Philip R.; Murshudov, Garib N.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 7
  • DOI: 10.1107/S0907444913000061

The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger
journal, November 2018


Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet
journal, June 2008

  • Abdiche, Yasmina; Malashock, Dan; Pinkerton, Alanna
  • Analytical Biochemistry, Vol. 377, Issue 2
  • DOI: 10.1016/j.ab.2008.03.035

JPred4: a protein secondary structure prediction server
journal, April 2015

  • Drozdetskiy, Alexey; Cole, Christian; Procter, James
  • Nucleic Acids Research, Vol. 43, Issue W1
  • DOI: 10.1093/nar/gkv332

DISOPRED3: precise disordered region predictions with annotated protein-binding activity
journal, November 2014


Assembly, function and evolution of cyanobacterial carboxysomes
journal, June 2016


Classification of Intrinsically Disordered Regions and Proteins
journal, December 2013

  • van der Lee, Robin; Buljan, Marija; Lang, Benjamin
  • Chemical Reviews, Vol. 114, Issue 13
  • DOI: 10.1021/cr400525m

Atomic-Level Models of the Bacterial Carboxysome Shell
journal, February 2008


Organization of Carboxysome Genes in the Thiobacilli
journal, February 2003


The CCP4 suite programs for protein crystallography
journal, September 1994


The correlation of the gene csoS2 of the carboxysome operon with two polypeptides of the carboxysome in Thiobacillus neapolitanus
journal, September 1999

  • Baker, S. H.; Lorbach, S. C.; Rodriguez-Buey, M.
  • Archives of Microbiology, Vol. 172, Issue 4
  • DOI: 10.1007/s002030050765

Integration, scaling, space-group assignment and post-refinement
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 133-144
  • DOI: 10.1107/S0907444909047374

Inference of Macromolecular Assemblies from Crystalline State
journal, September 2007


MFDp2: Accurate predictor of disorder in proteins by fusion of disorder probabilities, content and profiles
journal, January 2013

  • Mizianty, Marcin J.; Peng, Zhenling; Kurgan, Lukasz
  • Intrinsically Disordered Proteins, Vol. 1, Issue 1
  • DOI: 10.4161/idp.24428

Combining evidence using p-values: application to sequence homology searches
journal, February 1998


PONDR-FIT: A meta-predictor of intrinsically disordered amino acids
journal, April 2010

  • Xue, Bin; Dunbrack, Roland L.; Williams, Robert W.
  • Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, Vol. 1804, Issue 4
  • DOI: 10.1016/j.bbapap.2010.01.011

Elucidating Essential Role of Conserved Carboxysomal Protein CcmN Reveals Common Feature of Bacterial Microcompartment Assembly
journal, March 2012

  • Kinney, James N.; Salmeen, Annette; Cai, Fei
  • Journal of Biological Chemistry, Vol. 287, Issue 21
  • DOI: 10.1074/jbc.M112.355305

Carboxysomes and Carboxysome-like Inclusions
book, January 2006

  • Heinhorst, Sabine; Cannon, Gordon C.; Shively, Jessup M.
  • Microbiology Monographs
  • DOI: 10.1007/7171_023

Liquid-Liquid Phase Separation in Biology
journal, October 2014


Biogenesis of a Bacterial Organelle: The Carboxysome Assembly Pathway
journal, November 2013


Modularity of a carbon-fixing protein organelle
journal, December 2011

  • Bonacci, W.; Teng, P. K.; Afonso, B.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 2
  • DOI: 10.1073/pnas.1108557109

Structure of Halothiobacillus neapolitanus Carboxysomes by Cryo-electron Tomography
journal, December 2006

  • Schmid, Michael F.; Paredes, Angel M.; Khant, Htet A.
  • Journal of Molecular Biology, Vol. 364, Issue 3
  • DOI: 10.1016/j.jmb.2006.09.024

Functional Organelles in Prokaryotes: Polyhedral Inclusions (Carboxysomes) of Thiobacillus neapolitanus
journal, November 1973


Phase transitions in the assembly of multivalent signalling proteins
journal, March 2012

  • Li, Pilong; Banjade, Sudeep; Cheng, Hui-Chun
  • Nature, Vol. 483, Issue 7389
  • DOI: 10.1038/nature10879

Programmed Ribosomal Frameshifting Mediates Expression of the α-Carboxysome
journal, January 2016

  • Chaijarasphong, Thawatchai; Nichols, Robert J.; Kortright, Kaitlyn E.
  • Journal of Molecular Biology, Vol. 428, Issue 1
  • DOI: 10.1016/j.jmb.2015.11.017

Rubisco: Structure and Mechanism
journal, June 1992


Polyproline and the "spectroscopic ruler" revisited with single-molecule fluorescence
journal, February 2005

  • Schuler, B.; Lipman, E. A.; Steinbach, P. J.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 8
  • DOI: 10.1073/pnas.0408164102

Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

Kinetic and structural comparison of a protein’s cotranslational folding and refolding pathways
journal, May 2018

  • Samelson, Avi J.; Bolin, Eric; Costello, Shawn M.
  • Science Advances, Vol. 4, Issue 5
  • DOI: 10.1126/sciadv.aas9098

The Structure of Isolated Synechococcus Strain WH8102 Carboxysomes as Revealed by Electron Cryotomography
journal, September 2007

  • Iancu, Cristina V.; Ding, H. Jane; Morris, Dylan M.
  • Journal of Molecular Biology, Vol. 372, Issue 3
  • DOI: 10.1016/j.jmb.2007.06.059

Rubisco condensate formation by CcmM in β-carboxysome biogenesis
journal, January 2019


The evolution of inorganic carbon concentrating mechanisms in photosynthesis
journal, May 2008

  • Raven, John A.; Cockell, Charles S.; De La Rocha, Christina L.
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 363, Issue 1504
  • DOI: 10.1098/rstb.2008.0020

The small RbcS-like domains of the β-carboxysome structural protein CcmM bind RubisCO at a site distinct from that binding the RbcS subunit
journal, December 2018

  • Ryan, Patrick; Forrester, Taylor J. B.; Wroblewski, Charles
  • Journal of Biological Chemistry, Vol. 294, Issue 8
  • DOI: 10.1074/jbc.RA118.006330

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

pH determines the energetic efficiency of the cyanobacterial CO 2 concentrating mechanism
journal, August 2016

  • Mangan, Niall M.; Flamholz, Avi; Hood, Rachel D.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 36
  • DOI: 10.1073/pnas.1525145113

Deciphering molecular details in the assembly of alpha-type carboxysome
journal, October 2018


Tracing a protein’s folding pathway over evolutionary time using ancestral sequence reconstruction and hydrogen exchange
journal, September 2018


Biochemical characterization of predicted Precambrian RuBisCO
journal, January 2016

  • Shih, Patrick M.; Occhialini, Alessandro; Cameron, Jeffrey C.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10382

Analysis of Carboxysomes from Synechococcus PCC7942 Reveals Multiple Rubisco Complexes with Carboxysomal Proteins CcmM and CcaA
journal, August 2007

  • Long, Benedict M.; Badger, Murray R.; Whitney, Spencer M.
  • Journal of Biological Chemistry, Vol. 282, Issue 40
  • DOI: 10.1074/jbc.M703896200

Comparing the in Vivo Function of α-Carboxysomes and β-Carboxysomes in Two Model Cyanobacteria
journal, March 2014

  • Whitehead, Lynne; Long, Benedict M.; Price, G. Dean
  • Plant Physiology, Vol. 165, Issue 1
  • DOI: 10.1104/pp.114.237941

Carboxysomes: cyanobacterial RubisCO comes in small packages
journal, May 2011


Over-expression of the β-carboxysomal CcmM protein in Synechococcus PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA) and M58 content
journal, May 2011

  • Long, Benedict M.; Rae, Benjamin D.; Badger, Murray R.
  • Photosynthesis Research, Vol. 109, Issue 1-3
  • DOI: 10.1007/s11120-011-9659-8

A One Pot, One Step, Precision Cloning Method with High Throughput Capability
journal, November 2008


Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206