DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solvent-Free Coating of Organic Semiconductor Membranes with Centimetric Crystalline Domains

Abstract

Abstract Organic semiconductors (OSCs) have shown great promise in a variety of applications. Although solution processing of OSCs has resulted in high‐quality films, exquisite control of structural development to minimize defect formation during large‐scale fabrication remains formidable. Compounding this challenge is the use of halogenated organic solvents, which poses significant health and environmental hazards. However, the solvent‐free techniques introduced thus far impose additional limitations on solidification kinetics; the resulting OSC thin films are often more defective than those processed from solution. Here, a solvent‐free technique is reported to prepare OSC membranes with centimetric crystalline domains. Leveraging the tendency for liquid crystalline materials to preferentially orient, OSCs are “prealigned” by depositing them from the melt over a metal frame to form a freely suspended membrane. Crystallization from this prealigned phase affords membranes with unprecedented structural order across macroscopic distances. Field‐effect transistors comprising membranes of dioctyl[1]‐benzothieno[3,2‐b][1]benzothiophene (C8BTBT) and didodecyl[1]‐benzothieno[3,2‐b][1]benzothiophene (C12BTBT) having centimeter‐sized domains as active layers exhibit a hole mobility of ≈8.6 cm 2 V −1 s −1 , superseding the mobility of any transistors whose active layers are deposited from melt. This technique is scalable to yield membranes with large crystalline domains over wafer dimensions, making it amenable for broad applicationsmore » in large‐area organic electronics.« less

Authors:
 [1];  [2];  [3];  [4];  [1];  [1];  [1];  [4]; ORCiD logo [5]
  1. Princeton Univ., NJ (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  4. Peking Univ., Shenzhen (China)
  5. Princeton Univ., NJ (United States); Princeton Univ., NJ (United States). Andlinger Center for Energy and the Environment
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1773113
Alternate Identifier(s):
OSTI ID: 1804239
Report Number(s):
BNL-221219-2021-JAAM
Journal ID: ISSN 2199-160X
Grant/Contract Number:  
SC0012704; DMR‐1420541; CMMI‐1824674
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Electronic Materials
Additional Journal Information:
Journal Volume: 7; Journal Issue: 3; Journal ID: ISSN 2199-160X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; melt processing; organic semiconductors; single crystals; smectic liquid crystals; solvent-free coatings

Citation Formats

Xia, Yu, Li, Ruipeng, Tsai, Esther, He, Yaowu, Liu, Tianran, Zhao, Xiaoming, Gu, Kaichen, Meng, Hong, and Loo, Yueh‐Lin. Solvent-Free Coating of Organic Semiconductor Membranes with Centimetric Crystalline Domains. United States: N. p., 2021. Web. doi:10.1002/aelm.202000792.
Xia, Yu, Li, Ruipeng, Tsai, Esther, He, Yaowu, Liu, Tianran, Zhao, Xiaoming, Gu, Kaichen, Meng, Hong, & Loo, Yueh‐Lin. Solvent-Free Coating of Organic Semiconductor Membranes with Centimetric Crystalline Domains. United States. https://doi.org/10.1002/aelm.202000792
Xia, Yu, Li, Ruipeng, Tsai, Esther, He, Yaowu, Liu, Tianran, Zhao, Xiaoming, Gu, Kaichen, Meng, Hong, and Loo, Yueh‐Lin. Thu . "Solvent-Free Coating of Organic Semiconductor Membranes with Centimetric Crystalline Domains". United States. https://doi.org/10.1002/aelm.202000792. https://www.osti.gov/servlets/purl/1773113.
@article{osti_1773113,
title = {Solvent-Free Coating of Organic Semiconductor Membranes with Centimetric Crystalline Domains},
author = {Xia, Yu and Li, Ruipeng and Tsai, Esther and He, Yaowu and Liu, Tianran and Zhao, Xiaoming and Gu, Kaichen and Meng, Hong and Loo, Yueh‐Lin},
abstractNote = {Abstract Organic semiconductors (OSCs) have shown great promise in a variety of applications. Although solution processing of OSCs has resulted in high‐quality films, exquisite control of structural development to minimize defect formation during large‐scale fabrication remains formidable. Compounding this challenge is the use of halogenated organic solvents, which poses significant health and environmental hazards. However, the solvent‐free techniques introduced thus far impose additional limitations on solidification kinetics; the resulting OSC thin films are often more defective than those processed from solution. Here, a solvent‐free technique is reported to prepare OSC membranes with centimetric crystalline domains. Leveraging the tendency for liquid crystalline materials to preferentially orient, OSCs are “prealigned” by depositing them from the melt over a metal frame to form a freely suspended membrane. Crystallization from this prealigned phase affords membranes with unprecedented structural order across macroscopic distances. Field‐effect transistors comprising membranes of dioctyl[1]‐benzothieno[3,2‐b][1]benzothiophene (C8BTBT) and didodecyl[1]‐benzothieno[3,2‐b][1]benzothiophene (C12BTBT) having centimeter‐sized domains as active layers exhibit a hole mobility of ≈8.6 cm 2 V −1 s −1 , superseding the mobility of any transistors whose active layers are deposited from melt. This technique is scalable to yield membranes with large crystalline domains over wafer dimensions, making it amenable for broad applications in large‐area organic electronics.},
doi = {10.1002/aelm.202000792},
journal = {Advanced Electronic Materials},
number = 3,
volume = 7,
place = {United States},
year = {Thu Jan 21 00:00:00 EST 2021},
month = {Thu Jan 21 00:00:00 EST 2021}
}

Works referenced in this record:

Structure and fluctuations of smectic membranes
journal, February 2003

  • de Jeu, Wim H.; Ostrovskii, Boris I.; Shalaginov, Arcadi N.
  • Reviews of Modern Physics, Vol. 75, Issue 1
  • DOI: 10.1103/RevModPhys.75.181

Morphology control strategies for solution-processed organic semiconductor thin films
journal, January 2014

  • Diao, Ying; Shaw, Leo; Bao, Zhenan
  • Energy Environ. Sci., Vol. 7, Issue 7
  • DOI: 10.1039/C4EE00688G

Predicting surface anchoring: molecular organization across a thin film of 5CB liquid crystal on silicon
journal, January 2012

  • Pizzirusso, A.; Berardi, R.; Muccioli, L.
  • Chem. Sci., Vol. 3, Issue 2
  • DOI: 10.1039/C1SC00696G

Quantifying Resistances across Nanoscale Low- and High-Angle Interspherulite Boundaries in Solution-Processed Organic Semiconductor Thin Films
journal, October 2012

  • Lee, Stephanie S.; Mativetsky, Jeffrey M.; Loth, Marsha A.
  • ACS Nano, Vol. 6, Issue 11
  • DOI: 10.1021/nn303446h

Improving Organic Thin-Film Transistor Performance through Solvent-Vapor Annealing of Solution-Processable Triethylsilylethynyl Anthradithiophene
journal, July 2006

  • Dickey, K. C.; Anthony, J. E.; Loo, Y. -L.
  • Advanced Materials, Vol. 18, Issue 13
  • DOI: 10.1002/adma.200600188

Solid-State Processing of Organic Semiconductors
journal, September 2010

  • Baklar, Mohammed A.; Koch, Felix; Kumar, Avinesh
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.200904448

Quantifying the Energy Barriers and Elucidating the Charge Transport Mechanisms across Interspherulite Boundaries in Solution-Processed Organic Semiconductor Thin Films
journal, August 2015

  • Hailey, Anna K.; Wang, Szu-Ying; Chen, Yuanzhen
  • Advanced Functional Materials, Vol. 25, Issue 35
  • DOI: 10.1002/adfm.201501666

Organic semiconductor crystals
journal, January 2018

  • Wang, Chengliang; Dong, Huanli; Jiang, Lang
  • Chemical Society Reviews, Vol. 47, Issue 2
  • DOI: 10.1039/C7CS00490G

Progress and Challenges in Commercialization of Organic Electronics
journal, July 2008

  • Loo, Yueh-Lin; McCulloch, Iain
  • MRS Bulletin, Vol. 33, Issue 07, p. 653-662
  • DOI: 10.1557/mrs2008.149

Current Status and Opportunities of Organic Thin-Film Transistor Technologies
journal, May 2017

  • Guo, Xiaojun; Xu, Yong; Ogier, Simon
  • IEEE Transactions on Electron Devices, Vol. 64, Issue 5
  • DOI: 10.1109/TED.2017.2677086

Liquid crystalline thin films as a precursor for polycrystalline thin films aimed at field effect transistors
journal, April 2011

  • Iino, Hiroaki; Hanna, Jun-ichi
  • Journal of Applied Physics, Vol. 109, Issue 7
  • DOI: 10.1063/1.3563586

Availability of Liquid Crystallinity in Solution Processing for Polycrystalline Thin Films
journal, February 2011


Light-Scattering Study of Two-Dimensional Molecular-Orientation Fluctuations in a Freely Suspended Ferroelectric Liquid-Crystal Film
journal, March 1978


Attaining Melt Processing of Complementary Semiconducting Polymer Blends at 130 °C via Side-Chain Engineering
journal, January 2018

  • Gumyusenge, Aristide; Zhao, Xikang; Zhao, Yan
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 5
  • DOI: 10.1021/acsami.7b19847

Principles of Condensed Matter Physics
book, January 1995


Low-temperature melt processed polymer blend for organic thin-film transistors
journal, January 2012

  • Qiu, Longzhen; Xu, Qiong; Chen, Mengjie
  • Journal of Materials Chemistry, Vol. 22, Issue 36
  • DOI: 10.1039/c2jm33252c

Highly Soluble [1]Benzothieno[3,2- b ]benzothiophene (BTBT) Derivatives for High-Performance, Solution-Processed Organic Field-Effect Transistors
journal, December 2007

  • Ebata, Hideaki; Izawa, Takafumi; Miyazaki, Eigo
  • Journal of the American Chemical Society, Vol. 129, Issue 51
  • DOI: 10.1021/ja074841i

Organic Photovoltaics over Three Decades
journal, June 2018


Solubility Based Identification of Green Solvents for Small Molecule Organic Solar Cells
journal, November 2013

  • Burgués-Ceballos, Ignasi; Machui, Florian; Min, Jie
  • Advanced Functional Materials, Vol. 24, Issue 10
  • DOI: 10.1002/adfm.201301509

Organic single crystals: Addressing the fundamentals of organic electronics
journal, January 2013


Solid–solid transfer of organic semiconductors for field-effect transistor fabrication
journal, January 2010

  • Treier, Matthias; Orgiu, Emanuele; Zalewski, Leszek
  • Journal of Materials Chemistry, Vol. 20, Issue 41
  • DOI: 10.1039/c0jm02173c

Boosting the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues
journal, January 2016

  • Xue, Guobiao; Wu, Jiake; Fan, Congcheng
  • Materials Horizons, Vol. 3, Issue 2
  • DOI: 10.1039/C5MH00190K

General rule for the energy of water-induced traps in organic semiconductors
journal, April 2019


Overestimation of Carrier Mobility in Organic Thin Film Transistors Due to Unaccounted Fringe Currents
journal, February 2019


First-principles prediction of charge mobility in carbon and organic nanomaterials
journal, January 2012

  • Xi, Jinyang; Long, Mengqiu; Tang, Ling
  • Nanoscale, Vol. 4, Issue 15
  • DOI: 10.1039/c2nr30585b

Melt-Processing of Complementary Semiconducting Polymer Blends for High Performance Organic Transistors
journal, December 2016


Polymer field-effect transistors by a drawing method
journal, June 2004

  • Nagamatsu, Shuichi; Takashima, Wataru; Kaneto, Keiichi
  • Applied Physics Letters, Vol. 84, Issue 23
  • DOI: 10.1063/1.1751222

Liquid crystals for organic thin-film transistors
journal, April 2015

  • Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-ichi
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7828

High-Mobility, Solution-Processed Organic Field-Effect Transistors from C8-BTBT:Polystyrene Blends
journal, June 2018

  • Haase, Katherina; Teixeira da Rocha, Cecilia; Hauenstein, Christoph
  • Advanced Electronic Materials, Vol. 4, Issue 8
  • DOI: 10.1002/aelm.201800076

Multicolored Electrochromism in Polymers: Structures and Devices
journal, November 2004

  • Argun, Avni A.; Aubert, Pierre-Henri; Thompson, Barry C.
  • Chemistry of Materials, Vol. 16, Issue 23
  • DOI: 10.1021/cm049669l

Charge Transport in Organic and Polymeric Semiconductors for Flexible and Stretchable Devices
journal, December 2015


Charge Transport in Organic Semiconductors
book, January 2011

  • Bässler, Heinz; Köhler, Anna
  • Unimolecular and Supramolecular Electronics I
  • DOI: 10.1007/128_2011_218

Enhancing Molecular Alignment and Charge Transport of Solution-Sheared Semiconducting Polymer Films by the Electrical-Blade Effect
journal, May 2018

  • Molina-Lopez, Francisco; Wu, Hung-Chin; Wang, Ging-Ji Nathan
  • Advanced Electronic Materials, Vol. 4, Issue 7
  • DOI: 10.1002/aelm.201800110

Controlled Deposition of Crystalline Organic Semiconductors for Field-Effect-Transistor Applications
journal, March 2009

  • Liu, Shuhong; Wang, Wechung Maria; Briseno, Alejandro L.
  • Advanced Materials, Vol. 21, Issue 12, p. 1217-1232
  • DOI: 10.1002/adma.200802202

Device Physics of Solution-Processed Organic Field-Effect Transistors
journal, October 2005


Organic Semiconductor Growth and Morphology Considerations for Organic Thin-Film Transistors
journal, August 2010

  • Virkar, Ajay A.; Mannsfeld, Stefan; Bao, Zhenan
  • Advanced Materials, Vol. 22, Issue 34
  • DOI: 10.1002/adma.200903193

Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains
journal, June 2013

  • Diao, Ying; Tee, Benjamin C-K.; Giri, Gaurav
  • Nature Materials, Vol. 12, Issue 7
  • DOI: 10.1038/nmat3650

Critical assessment of charge mobility extraction in FETs
journal, December 2017

  • Choi, Hyun Ho; Cho, Kilwon; Frisbie, C. Daniel
  • Nature Materials, Vol. 17, Issue 1
  • DOI: 10.1038/nmat5035

25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon
journal, January 2014


Sequentially solution-processed, nanostructured polymer photovoltaics using selective solvents
journal, January 2014

  • Kim, Do Hwan; Mei, Jianguo; Ayzner, Alexander L.
  • Energy & Environmental Science, Vol. 7, Issue 3
  • DOI: 10.1039/c3ee43541e