DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility

Abstract

Hydrodynamic instabilities are a major factor in degradation of inertial confinement fusion (ICF) implosions. In the highest performing implosions on National Ignition Facility, yield amplification (YA) due to alpha particle heating approached ~3, while YA of ~15–30 is needed for ignition. Understanding and mitigation of the instabilities are critical to achieving ignition. This article reviews several experimental platforms that have been developed to directly measure these instabilities in all phases of ICF implosions. Measurements of ripple-shock propagation at OMEGA laser has provided results on initial seeds for the instabilities in three ablators—plastic (CH), beryllium, and high-density carbon. Additionally, at the ablation front, instability growth of pre-imposed modulations was measured in the linear regime using the hydrodynamic growth radiography platform. This platform was extended for modulation growth of 'native roughness' modulations and engineering features (fill tubes and capsule support membranes or 'tents'). Several new experimental platforms have or are being developed to measure instability growth at the ablator–ice interface. In the deceleration phase of implosions, complementary 'self-emission' and 'self-backlighting' platforms were developed to measure low-mode asymmetries and high-mode perturbations near peak compression.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1]; ORCiD logo [1];  [2];  [1];  [1];  [2] more »;  [1];  [1];  [1];  [2];  [1]; ORCiD logo [1];  [1];  [1];  [2];  [1];  [1];  [1];  [3];  [1];  [1];  [3];  [1];  [1];  [1];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [2];  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. General Atomics, San Diego, CA (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1769102
Report Number(s):
LLNL-JRNL-780363
Journal ID: ISSN 0741-3335; 975037; TRN: US2206709
Grant/Contract Number:  
AC52-07NA27344; NA0001808
Resource Type:
Accepted Manuscript
Journal Name:
Plasma Physics and Controlled Fusion
Additional Journal Information:
Journal Volume: 62; Journal Issue: 1; Journal ID: ISSN 0741-3335
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; inertial confinement fusion; indirect drive; hydrodynamic instabilities

Citation Formats

Smalyuk, V. A., Weber, C. R., Landen, O. L., Ali, S., Bachmann, B., Celliers, P. M., Dewald, E. L., Fernandez, A., Hammel, B. A., Hall, G., MacPhee, A. G., Pickworth, L., Robey, H. F., Alfonso, N., Baker, K. L., Hopkins, L. Berzak, Carlson, L., Casey, D. T., Clark, D. S., Crippen, J., Divol, L., Döppner, T., Edwards, M. J., Farrell, M., Felker, S., Field, J. E., Haan, S. W., Hamza, A. V., Havre, M., Herrmann, M. C., Hsing, W. W., Khan, S., Kline, J., Kroll, J. J., LePape, S., Loomis, E., MacGowan, B. J., Martinez, D., Masse, L., Mauldin, M., Milovich, J. L., Moore, A. S., Nikroo, A., Pak, A., Patel, P. K., Peterson, J. L., Raman, K., Remington, B. A., Rice, N., Schoff, M., and Stadermann, M. Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility. United States: N. p., 2019. Web. doi:10.1088/1361-6587/ab49f4.
Smalyuk, V. A., Weber, C. R., Landen, O. L., Ali, S., Bachmann, B., Celliers, P. M., Dewald, E. L., Fernandez, A., Hammel, B. A., Hall, G., MacPhee, A. G., Pickworth, L., Robey, H. F., Alfonso, N., Baker, K. L., Hopkins, L. Berzak, Carlson, L., Casey, D. T., Clark, D. S., Crippen, J., Divol, L., Döppner, T., Edwards, M. J., Farrell, M., Felker, S., Field, J. E., Haan, S. W., Hamza, A. V., Havre, M., Herrmann, M. C., Hsing, W. W., Khan, S., Kline, J., Kroll, J. J., LePape, S., Loomis, E., MacGowan, B. J., Martinez, D., Masse, L., Mauldin, M., Milovich, J. L., Moore, A. S., Nikroo, A., Pak, A., Patel, P. K., Peterson, J. L., Raman, K., Remington, B. A., Rice, N., Schoff, M., & Stadermann, M. Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility. United States. https://doi.org/10.1088/1361-6587/ab49f4
Smalyuk, V. A., Weber, C. R., Landen, O. L., Ali, S., Bachmann, B., Celliers, P. M., Dewald, E. L., Fernandez, A., Hammel, B. A., Hall, G., MacPhee, A. G., Pickworth, L., Robey, H. F., Alfonso, N., Baker, K. L., Hopkins, L. Berzak, Carlson, L., Casey, D. T., Clark, D. S., Crippen, J., Divol, L., Döppner, T., Edwards, M. J., Farrell, M., Felker, S., Field, J. E., Haan, S. W., Hamza, A. V., Havre, M., Herrmann, M. C., Hsing, W. W., Khan, S., Kline, J., Kroll, J. J., LePape, S., Loomis, E., MacGowan, B. J., Martinez, D., Masse, L., Mauldin, M., Milovich, J. L., Moore, A. S., Nikroo, A., Pak, A., Patel, P. K., Peterson, J. L., Raman, K., Remington, B. A., Rice, N., Schoff, M., and Stadermann, M. Thu . "Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility". United States. https://doi.org/10.1088/1361-6587/ab49f4. https://www.osti.gov/servlets/purl/1769102.
@article{osti_1769102,
title = {Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility},
author = {Smalyuk, V. A. and Weber, C. R. and Landen, O. L. and Ali, S. and Bachmann, B. and Celliers, P. M. and Dewald, E. L. and Fernandez, A. and Hammel, B. A. and Hall, G. and MacPhee, A. G. and Pickworth, L. and Robey, H. F. and Alfonso, N. and Baker, K. L. and Hopkins, L. Berzak and Carlson, L. and Casey, D. T. and Clark, D. S. and Crippen, J. and Divol, L. and Döppner, T. and Edwards, M. J. and Farrell, M. and Felker, S. and Field, J. E. and Haan, S. W. and Hamza, A. V. and Havre, M. and Herrmann, M. C. and Hsing, W. W. and Khan, S. and Kline, J. and Kroll, J. J. and LePape, S. and Loomis, E. and MacGowan, B. J. and Martinez, D. and Masse, L. and Mauldin, M. and Milovich, J. L. and Moore, A. S. and Nikroo, A. and Pak, A. and Patel, P. K. and Peterson, J. L. and Raman, K. and Remington, B. A. and Rice, N. and Schoff, M. and Stadermann, M.},
abstractNote = {Hydrodynamic instabilities are a major factor in degradation of inertial confinement fusion (ICF) implosions. In the highest performing implosions on National Ignition Facility, yield amplification (YA) due to alpha particle heating approached ~3, while YA of ~15–30 is needed for ignition. Understanding and mitigation of the instabilities are critical to achieving ignition. This article reviews several experimental platforms that have been developed to directly measure these instabilities in all phases of ICF implosions. Measurements of ripple-shock propagation at OMEGA laser has provided results on initial seeds for the instabilities in three ablators—plastic (CH), beryllium, and high-density carbon. Additionally, at the ablation front, instability growth of pre-imposed modulations was measured in the linear regime using the hydrodynamic growth radiography platform. This platform was extended for modulation growth of 'native roughness' modulations and engineering features (fill tubes and capsule support membranes or 'tents'). Several new experimental platforms have or are being developed to measure instability growth at the ablator–ice interface. In the deceleration phase of implosions, complementary 'self-emission' and 'self-backlighting' platforms were developed to measure low-mode asymmetries and high-mode perturbations near peak compression.},
doi = {10.1088/1361-6587/ab49f4},
journal = {Plasma Physics and Controlled Fusion},
number = 1,
volume = 62,
place = {United States},
year = {Thu Oct 24 00:00:00 EDT 2019},
month = {Thu Oct 24 00:00:00 EDT 2019}
}

Works referenced in this record:

Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA
journal, May 2017

  • Stoeckl, C.; Epstein, R.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977918

Moiré interferometry of short wavelength Rayleigh–Taylor growth
journal, January 1999

  • Matsuoka, M.; Azechi, H.; Nakai, M.
  • Review of Scientific Instruments, Vol. 70, Issue 1
  • DOI: 10.1063/1.1149434

Hot-Spot Mix in Ignition-Scale Inertial Confinement Fusion Targets
journal, July 2013


Review of hydro-instability experiments with alternate capsule supports in indirect-drive implosions on the National Ignition Facility
journal, July 2018

  • Smalyuk, V. A.; Robey, H. F.; Alday, C. L.
  • Physics of Plasmas, Vol. 25, Issue 7
  • DOI: 10.1063/1.5042081

Measurement of Hydrodynamic Growth near Peak Velocity in an Inertial Confinement Fusion Capsule Implosion using a Self-Radiography Technique
journal, July 2016


Approaching a burning plasma on the NIF
journal, May 2019

  • Hurricane, O. A.; Springer, P. T.; Patel, P. K.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5087256

Progress toward a self-consistent set of 1D ignition capsule metrics in ICF
journal, December 2018

  • Lindl, J. D.; Haan, S. W.; Landen, O. L.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5049595

Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility
journal, October 2016

  • Smalyuk, V. A.; Robey, H. F.; Döppner, T.
  • Physics of Plasmas, Vol. 23, Issue 10
  • DOI: 10.1063/1.4964919

Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive
journal, August 2015

  • MacPhee, A. G.; Peterson, J. L.; Casey, D. T.
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4928909

A comprehensive alpha-heating model for inertial confinement fusion
journal, January 2018

  • Christopherson, A. R.; Betti, R.; Bose, A.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.4991405

Improving ICF implosion performance with alternative capsule supports
journal, May 2017

  • Weber, C. R.; Casey, D. T.; Clark, D. S.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977536

Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility
journal, October 2017

  • Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.4995568

The high-foot implosion campaign on the National Ignition Facility
journal, May 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874330

The Crystal Backlighter Imager: A spherically bent crystal imager for radiography on the National Ignition Facility
journal, January 2019

  • Hall, G. N.; Krauland, C. M.; Schollmeier, M. S.
  • Review of Scientific Instruments, Vol. 90, Issue 1
  • DOI: 10.1063/1.5058700

Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions
journal, August 2013


The Physics of Inertial Fusion
book, January 2004


Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping
journal, May 2016

  • Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4944821

X-ray streaked refraction enhanced radiography for inferring inflight density gradients in ICF capsule implosions
journal, October 2018

  • Dewald, E. L.; Landen, O. L.; Masse, L.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5039346

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
journal, June 2015


Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front
journal, December 2014

  • Casner, A.; Masse, L.; Delorme, B.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4903331

Mix and hydrodynamic instabilities on NIF
journal, June 2017


Probing the seeding of hydrodynamic instabilities from nonuniformities in ablator materials using 2D velocimetry
journal, September 2018

  • Ali, S. J.; Celliers, P. M.; Haan, S.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5047943

Hydrodynamic instabilities seeded by the X-ray shadow of ICF capsule fill-tubes
journal, August 2018

  • MacPhee, A. G.; Smalyuk, V. A.; Landen, O. L.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5037816

High energy-density science on the National Ignition Facility
conference, January 1998

  • Campbell, E. M.; Cauble, R.; Remington, B. A.
  • The tenth American Physical Society topical conference on shock compression of condensed matter, AIP Conference Proceedings
  • DOI: 10.1063/1.55630

Instability of the interface of two gases accelerated by a shock wave
journal, January 1972


High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility
journal, September 2018


A “polar contact” tent for reduced perturbation and improved performance of NIF ignition capsules
journal, August 2018

  • Hammel, B. A.; Weber, C. R.; Stadermann, M.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5032121

Hydrodynamic growth of shell modulations in the deceleration phase of spherical direct-drive implosions
journal, May 2003

  • Smalyuk, V. A.; Delettrez, J. A.; Dumanis, S. B.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1558292

The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
journal, March 1950

  • Taylor, Geoffrey Ingram
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 201, Issue 1065, p. 192-196
  • DOI: 10.1098/rspa.1950.0052

Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant
journal, August 2018

  • Berzak Hopkins, L.; Divol, L.; Weber, C.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5033459

Taylor instability in shock acceleration of compressible fluids
journal, May 1960

  • Richtmyer, Robert D.
  • Communications on Pure and Applied Mathematics, Vol. 13, Issue 2
  • DOI: 10.1002/cpa.3160130207

X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube
journal, March 2017