DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Facile Fabrication of Porous Si Microspheres from Low-Cost Precursors for High-Capacity Electrode

Abstract

Comparing with nanometer-sized Si (nano-Si), the micrometer-sized Si (micro-Si) is more promising for the practical applications due to its low cost and scalable production method. Fabrication of micro-Si with porous architecture can efficiently alleviate the high mechanical stress and severe mechanical fracture. Till now, it is still a challenge to achieve porous micro-Si with controlled morphology, such as microsphere, from a cost-efficient and environmentally friendly approach. Herein, a facile approach on fabricating Si microsphere with porous architecture via a low-temperature aluminothermic reduction (LTAR) method using the low-cost fumed silica (FS) as raw material is introduced. After compositing with graphite and then coating with amorphous carbon, the SiFS/graphite@carbon (SiFS/G@C) electrode displays superior reversible capacity (730 mAh g–1 after 100 cycles) and excellent rate capability (729.1 mAh g–1 at 1 A g–1). The electrochemical performance is much better than that of Si-microparticles/G@C (Mic-Si/G@C, 368 mAh g–1 at 100 mA g–1 after 100 cycles). These results show the great potential of SiFS/G@C electrode as an alternative high-performance electrode material for lithium ion batteries. Moreover, the LTAR adopted in the current study significantly reduces the energy consumption for preparation of Si microspheres from low-cost raw materials.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [2];  [1]
  1. Nankai Univ., Tianjin (China)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Natural Science Foundation of China (NSFC); Natural Science Foundation of Tianjin; China Ministry of Education (MOE)
OSTI Identifier:
1761722
Alternate Identifier(s):
OSTI ID: 1579980
Grant/Contract Number:  
AC05-00OR22725; 21421001; 18JCZDJC31400; IRT13022
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials Interfaces
Additional Journal Information:
Journal Volume: 7; Journal Issue: 3; Journal ID: ISSN 2196-7350
Publisher:
Wiley-VCH
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Li-ion battery; silicon-based anode; micro silicon; low temperature aluminothermic reduction

Citation Formats

Geng, Liyuan, Yang, Dandan, Gao, Shilun, Zhang, Zhaoxiang, Sun, Feiyuan, Pan, Yiyang, Li, Shaoqi, Li, Xiaohua, Cao, Peng‐Fei, and Yang, Huabin. Facile Fabrication of Porous Si Microspheres from Low-Cost Precursors for High-Capacity Electrode. United States: N. p., 2019. Web. doi:10.1002/admi.201901726.
Geng, Liyuan, Yang, Dandan, Gao, Shilun, Zhang, Zhaoxiang, Sun, Feiyuan, Pan, Yiyang, Li, Shaoqi, Li, Xiaohua, Cao, Peng‐Fei, & Yang, Huabin. Facile Fabrication of Porous Si Microspheres from Low-Cost Precursors for High-Capacity Electrode. United States. https://doi.org/10.1002/admi.201901726
Geng, Liyuan, Yang, Dandan, Gao, Shilun, Zhang, Zhaoxiang, Sun, Feiyuan, Pan, Yiyang, Li, Shaoqi, Li, Xiaohua, Cao, Peng‐Fei, and Yang, Huabin. Wed . "Facile Fabrication of Porous Si Microspheres from Low-Cost Precursors for High-Capacity Electrode". United States. https://doi.org/10.1002/admi.201901726. https://www.osti.gov/servlets/purl/1761722.
@article{osti_1761722,
title = {Facile Fabrication of Porous Si Microspheres from Low-Cost Precursors for High-Capacity Electrode},
author = {Geng, Liyuan and Yang, Dandan and Gao, Shilun and Zhang, Zhaoxiang and Sun, Feiyuan and Pan, Yiyang and Li, Shaoqi and Li, Xiaohua and Cao, Peng‐Fei and Yang, Huabin},
abstractNote = {Comparing with nanometer-sized Si (nano-Si), the micrometer-sized Si (micro-Si) is more promising for the practical applications due to its low cost and scalable production method. Fabrication of micro-Si with porous architecture can efficiently alleviate the high mechanical stress and severe mechanical fracture. Till now, it is still a challenge to achieve porous micro-Si with controlled morphology, such as microsphere, from a cost-efficient and environmentally friendly approach. Herein, a facile approach on fabricating Si microsphere with porous architecture via a low-temperature aluminothermic reduction (LTAR) method using the low-cost fumed silica (FS) as raw material is introduced. After compositing with graphite and then coating with amorphous carbon, the SiFS/graphite@carbon (SiFS/G@C) electrode displays superior reversible capacity (730 mAh g–1 after 100 cycles) and excellent rate capability (729.1 mAh g–1 at 1 A g–1). The electrochemical performance is much better than that of Si-microparticles/G@C (Mic-Si/G@C, 368 mAh g–1 at 100 mA g–1 after 100 cycles). These results show the great potential of SiFS/G@C electrode as an alternative high-performance electrode material for lithium ion batteries. Moreover, the LTAR adopted in the current study significantly reduces the energy consumption for preparation of Si microspheres from low-cost raw materials.},
doi = {10.1002/admi.201901726},
journal = {Advanced Materials Interfaces},
number = 3,
volume = 7,
place = {United States},
year = {Wed Dec 18 00:00:00 EST 2019},
month = {Wed Dec 18 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles
journal, October 2013

  • Nitta, Naoki; Yushin, Gleb
  • Particle & Particle Systems Characterization, Vol. 31, Issue 3
  • DOI: 10.1002/ppsc.201300231

Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries
journal, December 2008

  • Kim, Hyunjung; Han, Byunghee; Choo, Jaebum
  • Angewandte Chemie, Vol. 120, Issue 52
  • DOI: 10.1002/ange.200804355

High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction
journal, April 2018


Evaporation-Induced Coating of Hydrous Ruthenium Oxide on Mesoporous Silica Nanoparticles to Develop High-Performance Supercapacitors
journal, March 2013


Ionically Conductive Self-Healing Binder for Low Cost Si Microparticles Anodes in Li-Ion Batteries
journal, February 2018

  • Munaoka, Takatoshi; Yan, Xuzhou; Lopez, Jeffrey
  • Advanced Energy Materials, Vol. 8, Issue 14
  • DOI: 10.1002/aenm.201703138

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications
journal, January 2018


Edge-thionic acid-functionalized graphene nanoplatelets as anode materials for high-rate lithium ion batteries
journal, August 2019


Aluminothermic reduction enabled synthesis of silicon hollow microspheres from commercialized silica nanoparticles for superior lithium storage
journal, January 2016

  • Zhou, Zheng-Wei; Liu, Yi-Tao; Xie, Xu-Ming
  • Chemical Communications, Vol. 52, Issue 54
  • DOI: 10.1039/C6CC03766F

Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries
journal, June 2015

  • Liu, Jun; Kopold, Peter; van Aken, Peter A.
  • Angewandte Chemie International Edition, Vol. 54, Issue 33
  • DOI: 10.1002/anie.201503150

Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
journal, June 2013

  • Wu, Hui; Yu, Guihua; Pan, Lijia
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2941

Microstructure Controlled Porous Silicon Particles as a High Capacity Lithium Storage Material via Dual Step Pore Engineering
journal, April 2018

  • Sohn, Myungbeom; Lee, Dong Geun; Park, Hyeong-Il
  • Advanced Functional Materials, Vol. 28, Issue 23
  • DOI: 10.1002/adfm.201800855

A water-soluble binary conductive binder for Si anode lithium ion battery
journal, May 2019


25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries
journal, August 2013

  • McDowell, Matthew T.; Lee, Seok Woo; Nix, William D.
  • Advanced Materials, Vol. 25, Issue 36
  • DOI: 10.1002/adma.201301795

Scalable Synthesis of Interconnected Porous Silicon/Carbon Composites by the Rochow Reaction as High-Performance Anodes of Lithium Ion Batteries
journal, April 2014

  • Zhang, Zailei; Wang, Yanhong; Ren, Wenfeng
  • Angewandte Chemie International Edition
  • DOI: 10.1002/anie.201310412

Si/Ag/C Nanohybrids with in Situ Incorporation of Super-Small Silver Nanoparticles: Tiny Amount, Huge Impact
journal, January 2018


A magnesiothermic reaction process for the scalable production of mesoporous silicon for rechargeable lithium batteries
journal, January 2013

  • Xing, An; Zhang, Jing; Bao, Zhihao
  • Chemical Communications, Vol. 49, Issue 60
  • DOI: 10.1039/c3cc43134g

Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries
journal, January 2015

  • Li, Bing; Yao, Fei; Bae, Jung Jun
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep07659

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Preparation of a Si/SiO 2 -Ordered-Mesoporous-Carbon Nanocomposite as an Anode for High-Performance Lithium-Ion and Sodium-Ion Batteries
journal, January 2018

  • Zeng, Lingxing; Liu, Renpin; Han, Lei
  • Chemistry - A European Journal, Vol. 24, Issue 19
  • DOI: 10.1002/chem.201704780

Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries
journal, January 2017

  • Li, Jin-Yi; Xu, Quan; Li, Ge
  • Materials Chemistry Frontiers, Vol. 1, Issue 9
  • DOI: 10.1039/C6QM00302H

Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life
journal, July 2011

  • Yao, Yan; McDowell, Matthew T.; Ryu, Ill
  • Nano Letters, Vol. 11, Issue 7, p. 2949-2954
  • DOI: 10.1021/nl201470j

Carbon-Coated Silicon Nanowires on Carbon Fabric as Self-Supported Electrodes for Flexible Lithium-Ion Batteries
journal, March 2017

  • Wang, Xiaolei; Li, Ge; Seo, Min Ho
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 11
  • DOI: 10.1021/acsami.6b12080

Silicon Nanotube Battery Anodes
journal, November 2009

  • Park, Mi-Hee; Kim, Min Gyu; Joo, Jaebum
  • Nano Letters, Vol. 9, Issue 11, p. 3844-3847
  • DOI: 10.1021/nl902058c

Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes
journal, April 2019


Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
journal, November 2013

  • Wang, Chao; Wu, Hui; Chen, Zheng
  • Nature Chemistry, Vol. 5, Issue 12
  • DOI: 10.1038/nchem.1802

Layered amorphous silicon as negative electrodes in lithium-ion batteries
journal, November 2016


Novel Lignin-Derived Water-Soluble Binder for Micro Silicon Anode in Lithium-Ion Batteries
journal, August 2018


Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors
journal, April 2013


Watermelon-Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium-Ion Battery Anodes
journal, October 2016


Extremely High Yield Conversion from Low-Cost Sand to High-Capacity Si Electrodes for Li-Ion Batteries
journal, June 2014

  • Yoo, Jung-Keun; Kim, Jongsoon; Choi, Min-Jae
  • Advanced Energy Materials, Vol. 4, Issue 16
  • DOI: 10.1002/aenm.201400622

Surface-Functionalized Silicon Nanoparticles as Anode Material for Lithium-Ion Battery
journal, November 2018

  • Jiang, Sisi; Hu, Bin; Sahore, Ritu
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 51
  • DOI: 10.1021/acsami.8b17729

Reversible Storage of Lithium in Silver-Coated Three-Dimensional Macroporous Silicon
journal, May 2010


Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries
journal, September 2004


High-Areal-Capacity Silicon Electrodes with Low-Cost Silicon Particles Based on Spatial Control of Self-Healing Binder
journal, January 2015

  • Chen, Zheng; Wang, Chao; Lopez, Jeffrey
  • Advanced Energy Materials, Vol. 5, Issue 8
  • DOI: 10.1002/aenm.201401826

Review of porous silicon preparation and its application for lithium-ion battery anodes
journal, September 2013


Economical Synthesis and Promotion of the Electrochemical Performance of Silicon Nanowires as Anode Material in Li-Ion Batteries
journal, February 2013

  • Xiao, Ying; Hao, Di; Chen, Huixin
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 5
  • DOI: 10.1021/am302731y

Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte
journal, January 2016

  • Young, Christine; Salunkhe, Rahul R.; Tang, Jing
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 42
  • DOI: 10.1039/C6CP05555A

Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries
journal, January 2018

  • Cao, Peng-Fei; Naguib, Michael; Du, Zhijia
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 4
  • DOI: 10.1021/acsami.7b13205

A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries
journal, March 2010

  • Kim, Hyejung; Seo, Minho; Park, Mi-Hee
  • Angewandte Chemie International Edition, Vol. 49, Issue 12
  • DOI: 10.1002/anie.200906287

Highly efficient poly(fluorene phenylene) copolymer as a new class of binder for high-capacity silicon anode in lithium-ion batteries
journal, October 2017

  • Yuca, Neslihan; Cetintasoglu, Mehmet E.; Dogdu, Murat F.
  • International Journal of Energy Research, Vol. 42, Issue 3
  • DOI: 10.1002/er.3913

Li-Metal-Free Prelithiation of Si-Based Negative Electrodes for Full Li-Ion Batteries
journal, July 2015


Recycling rice husks for high-capacity lithium battery anodes
journal, July 2013

  • Jung, D. S.; Ryou, M. -H.; Sung, Y. J.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 30
  • DOI: 10.1073/pnas.1305025110

Hierarchical micro/nano porous silicon Li-ion battery anodes
journal, January 2012

  • Zhao, Yu; Liu, Xizheng; Li, Huiqiao
  • Chemical Communications, Vol. 48, Issue 42
  • DOI: 10.1039/c2cc31476b

Aqueous emulsion of conductive polymer binders for Si anode materials in lithium ion batteries
journal, May 2019


Adsorption and Diffusion of Lithium on Layered Silicon for Li-Ion Storage
journal, April 2013

  • Tritsaris, Georgios A.; Kaxiras, Efthimios; Meng, Sheng
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400830u

Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries
journal, July 2014

  • Favors, Zachary; Wang, Wei; Bay, Hamed Hosseini
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05623

Novel mesoporous silicon nanorod as an anode material for lithium ion batteries
journal, May 2014


Polymer Binders Constructed through Dynamic Noncovalent Bonds for High‐Capacity Silicon‐Based Anodes
journal, September 2009

  • Pan, Yiyang; Gao, Shilun; Sun, Feiyuan
  • Chemistry – A European Journal, Vol. 25, Issue 47
  • DOI: 10.1002/chem.201900988

Preparation of Nanocrystalline Silicon from SiCl 4 at 200 °C in Molten Salt for High-Performance Anodes for Lithium Ion Batteries
journal, February 2015


Enhanced Lithium Ion Battery Cycling of Silicon Nanowire Anodes by Template Growth to Eliminate Silicon Underlayer Islands
journal, October 2013

  • Cho, Jeong-Hyun; Picraux, S. Tom
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl4036498

Block copolymer assisted synthesis of porous α-Ni(OH)2 microflowers with high surface areas as electrochemical pseudocapacitor materials
journal, January 2012

  • Bastakoti, Bishnu Prasad; Huang, Hou-Sheng; Chen, Lin-Chi
  • Chemical Communications, Vol. 48, Issue 73
  • DOI: 10.1039/c2cc32945j

A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries
journal, March 2010


Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries
journal, December 2008

  • Kim, Hyunjung; Han, Byunghee; Choo, Jaebum
  • Angewandte Chemie International Edition, Vol. 47, Issue 52, p. 10151-10154
  • DOI: 10.1002/anie.200804355

Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries
journal, June 2015

  • Liu, Jun; Kopold, Peter; van Aken, Peter A.
  • Angewandte Chemie, Vol. 127, Issue 33
  • DOI: 10.1002/ange.201503150

Preparation of Nanocrystalline Silicon from SiCl 4 at 200 °C in Molten Salt for High-Performance Anodes for Lithium Ion Batteries
journal, January 2015

  • Lin, Ning; Han, Ying; Wang, Liangbiao
  • Angewandte Chemie International Edition, Vol. 54, Issue 12
  • DOI: 10.1002/anie.201411830