DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlling P–C/C–H Bond Cleavage in Nickel Bis(diphosphine) Complexes: Reactivity Scope, Mechanism, and Computations

Abstract

The synthesis of heteroleptic [Ni(P2N2)(diphosphine)][BF4]2 complexes and the cleavage of P–C and C–H bonds of the P2N2 ligand in those complexes are reported here. The products are five-coordinate complexes in which Ni–C and P–H bonds have formed to give a cyclic moiety containing Ni–CH$$=$$NR2. The reactivity of [Ni(P2N2)(diphosphine)][BF4]2 complexes is influenced by the rigidity of the diphosphine, the steric effect of the substituents, and length of the carbon linker of the diphosphine ligands. Diphosphine ligands bearing a rigid backbone (e.g., dmpbz, 1,2-bis(dimethylphosphino)benzene) or aromatic substituents (e.g., dppe, 1,2-bis(diphenylphosphino)ethane) react with [Ni(PtBu2NBn2)(CH3CN)2][BF4]2 to give P–C/C–H bond cleavage products. Both [Ni(PtBu2NBn2)(dmpe)(MeCN)][BF4]2 and [Ni(PtBu2NBn2)(dmpm)(MeCN)][BF4]2 (dmpm = 1,2-bis(dimethylylphosphino)methane) were prepared by the reaction of [Ni(PtBu2NBn2)(CH3CN)2][BF4]2 with the corresponding diphosphine ligands. [Ni(PtBu2NBn2)(dmpe)(MeCN)][BF4]2 readily undergoes P–C/C–H bond cleavage in nitromethane. In sharp contrast, [Ni(PtBu2NBn2)(dmpm)][BF4]2 is stabilized by dmpm, a diphosphine with small bite angle, and does not show P–C/C–H bond cleavage reactivity. Computational results show that for complexes bearing less bulky diphosphine ligands, such as dmpm, the barriers for the rate-determining transition states are in some examples higher than 30 kcal/mol with the M06 functional, higher than those for complexes bearing more rigid or more bulky ligands, consistent with experimental studies. The calculated barriers for the first transition state correlated with increased values of the dihedral angle formed by the two NiP2 planes.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Inst. for Integrated Catalysis
  2. Texas A & M Univ., College Station, TX (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division; National Science Foundation (NSF); Welch Foundation
OSTI Identifier:
1682269
Report Number(s):
PNNL-SA-140527
Journal ID: ISSN 0276-7333
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Organometallics
Additional Journal Information:
Journal Volume: 39; Journal Issue: 18; Journal ID: ISSN 0276-7333
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Ligands; Bond cleavage; Organophosphorus compounds; Reactivity; Mathematical methods

Citation Formats

Zhang, Shaoguang, Li, Haixia, Appel, Aaron M., Hall, Michael B., and Bullock, R. Morris. Controlling P–C/C–H Bond Cleavage in Nickel Bis(diphosphine) Complexes: Reactivity Scope, Mechanism, and Computations. United States: N. p., 2020. Web. doi:10.1021/acs.organomet.0c00388.
Zhang, Shaoguang, Li, Haixia, Appel, Aaron M., Hall, Michael B., & Bullock, R. Morris. Controlling P–C/C–H Bond Cleavage in Nickel Bis(diphosphine) Complexes: Reactivity Scope, Mechanism, and Computations. United States. https://doi.org/10.1021/acs.organomet.0c00388
Zhang, Shaoguang, Li, Haixia, Appel, Aaron M., Hall, Michael B., and Bullock, R. Morris. Thu . "Controlling P–C/C–H Bond Cleavage in Nickel Bis(diphosphine) Complexes: Reactivity Scope, Mechanism, and Computations". United States. https://doi.org/10.1021/acs.organomet.0c00388. https://www.osti.gov/servlets/purl/1682269.
@article{osti_1682269,
title = {Controlling P–C/C–H Bond Cleavage in Nickel Bis(diphosphine) Complexes: Reactivity Scope, Mechanism, and Computations},
author = {Zhang, Shaoguang and Li, Haixia and Appel, Aaron M. and Hall, Michael B. and Bullock, R. Morris},
abstractNote = {The synthesis of heteroleptic [Ni(P2N2)(diphosphine)][BF4]2 complexes and the cleavage of P–C and C–H bonds of the P2N2 ligand in those complexes are reported here. The products are five-coordinate complexes in which Ni–C and P–H bonds have formed to give a cyclic moiety containing Ni–CH$=$NR2. The reactivity of [Ni(P2N2)(diphosphine)][BF4]2 complexes is influenced by the rigidity of the diphosphine, the steric effect of the substituents, and length of the carbon linker of the diphosphine ligands. Diphosphine ligands bearing a rigid backbone (e.g., dmpbz, 1,2-bis(dimethylphosphino)benzene) or aromatic substituents (e.g., dppe, 1,2-bis(diphenylphosphino)ethane) react with [Ni(PtBu2NBn2)(CH3CN)2][BF4]2 to give P–C/C–H bond cleavage products. Both [Ni(PtBu2NBn2)(dmpe)(MeCN)][BF4]2 and [Ni(PtBu2NBn2)(dmpm)(MeCN)][BF4]2 (dmpm = 1,2-bis(dimethylylphosphino)methane) were prepared by the reaction of [Ni(PtBu2NBn2)(CH3CN)2][BF4]2 with the corresponding diphosphine ligands. [Ni(PtBu2NBn2)(dmpe)(MeCN)][BF4]2 readily undergoes P–C/C–H bond cleavage in nitromethane. In sharp contrast, [Ni(PtBu2NBn2)(dmpm)][BF4]2 is stabilized by dmpm, a diphosphine with small bite angle, and does not show P–C/C–H bond cleavage reactivity. Computational results show that for complexes bearing less bulky diphosphine ligands, such as dmpm, the barriers for the rate-determining transition states are in some examples higher than 30 kcal/mol with the M06 functional, higher than those for complexes bearing more rigid or more bulky ligands, consistent with experimental studies. The calculated barriers for the first transition state correlated with increased values of the dihedral angle formed by the two NiP2 planes.},
doi = {10.1021/acs.organomet.0c00388},
journal = {Organometallics},
number = 18,
volume = 39,
place = {United States},
year = {Thu Sep 03 00:00:00 EDT 2020},
month = {Thu Sep 03 00:00:00 EDT 2020}
}

Works referenced in this record:

Deactivation in Homogeneous Transition Metal Catalysis: Causes, Avoidance, and Cure
journal, November 2014


Cyclometalation Using d-Block Transition Metals: Fundamental Aspects and Recent Trends
journal, February 2010


Dinitrogen Reduction by a Chromium(0) Complex Supported by a 16-Membered Phosphorus Macrocycle
journal, July 2013

  • Mock, Michael T.; Chen, Shentan; O’Hagan, Molly
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja405668u

Intramolecular Iron-Mediated C–H Bond Heterolysis with an Assist of Pendant Base in a [FeFe]-Hydrogenase Model
journal, October 2014

  • Zheng, Dehua; Wang, Ning; Wang, Mei
  • Journal of the American Chemical Society, Vol. 136, Issue 48
  • DOI: 10.1021/ja5078014

Synthesis, structure and reactions of a dinitrogen complex of iron(0), [Fe(N2)(depe)2] (depe = Et2PCH2CH2PEt2)
journal, January 1997

  • Hirano, Masafumi; Akita, Masatoshi; Morikita, Takashi
  • Journal of the Chemical Society, Dalton Transactions, Issue 19
  • DOI: 10.1039/a702019h

Protonation of Ferrous Dinitrogen Complexes Containing a Diphosphine Ligand with a Pendent Amine
journal, June 2012

  • Heiden, Zachariah M.; Chen, Shentan; Mock, Michael T.
  • Inorganic Chemistry, Vol. 52, Issue 7
  • DOI: 10.1021/ic4000704

Nickel(II) Pincer Carbene Complexes: Oxidative Addition of an Aryl C–H Bond to Form a Ni(II) Hydride
journal, September 2014

  • Matson, Ellen M.; Espinosa Martinez, Gabriel; Ibrahim, Abdulrahman D.
  • Organometallics, Vol. 34, Issue 2
  • DOI: 10.1021/om5007177

Synthesis and Characterization of a Family of POCOP Pincer Complexes with Nickel: Reactivity Towards CO 2 and Phenylacetylene
journal, July 2014

  • Jonasson, Klara J.; Wendt, Ola F.
  • Chemistry - A European Journal, Vol. 20, Issue 37
  • DOI: 10.1002/chem.201403246

Activation of Water, Ammonia, and Other Small Molecules by PC carbene P Nickel Pincer Complexes
journal, July 2013

  • Gutsulyak, Dmitry V.; Piers, Warren E.; Borau-Garcia, Javier
  • Journal of the American Chemical Society, Vol. 135, Issue 32
  • DOI: 10.1021/ja406742n

Facile P−C/C−H Bond-Cleavage Reactivity of Nickel Bis(diphosphine) Complexes
journal, June 2016

  • Zhang, Shaoguang; Li, Haixia; Appel, Aaron M.
  • Chemistry - A European Journal, Vol. 22, Issue 28
  • DOI: 10.1002/chem.201601469

Übergangsmetallorganische Reaktionskaskaden zum Aufbau höher aggregierter Systeme: Nickelacyclische Carboxylate als Precursoren für die Synthese eines Oxinato-Nickel(II)-Tetramers
journal, October 2005

  • Langer, Jens; Görls, Helmar; Gillies, Glenn
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 631, Issue 13-14
  • DOI: 10.1002/zaac.200500114

Mechanistic Insights into Catalytic H 2 Oxidation by Ni Complexes Containing a Diphosphine Ligand with a Positioned Amine Base
journal, April 2009

  • Yang, Jenny Y.; Bullock, R. Morris; Shaw, Wendy J.
  • Journal of the American Chemical Society, Vol. 131, Issue 16
  • DOI: 10.1021/ja900483x

Computational Exploration of Alternative Catalysts for Olefin Purification: Cobalt and Copper Analogues Inspired by Nickel Bis(dithiolene) Electrocatalysis
journal, August 2014

  • Li, Haixia; Brothers, Edward N.; Hall, Michael B.
  • Inorganic Chemistry, Vol. 53, Issue 18
  • DOI: 10.1021/ic5011538

Impact of Weak Agostic Interactions in Nickel Electrocatalysts for Hydrogen Oxidation
journal, June 2017


Two Pathways for Electrocatalytic Oxidation of Hydrogen by a Nickel Bis(diphosphine) Complex with Pendant Amines in the Second Coordination Sphere
journal, June 2013

  • Yang, Jenny Y.; Smith, Stuart E.; Liu, Tianbiao
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja400705a

[Ni(P Ph 2 N Bn 2 ) 2 (CH 3 CN)] 2+ as an Electrocatalyst for H 2 Production: Dependence on Acid Strength and Isomer Distribution
journal, May 2011

  • Appel, Aaron M.; Pool, Douglas H.; O’Hagan, Molly
  • ACS Catalysis, Vol. 1, Issue 7
  • DOI: 10.1021/cs2000939

Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen
journal, November 2015


Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H 2 Production
journal, March 2018

  • Klug, Christina M.; Cardenas, Allan Jay P.; Bullock, R. Morris
  • ACS Catalysis, Vol. 8, Issue 4
  • DOI: 10.1021/acscatal.7b04379

Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic
journal, February 2012

  • Smith, Stuart E.; Yang, Jenny Y.; DuBois, Daniel L.
  • Angewandte Chemie International Edition, Vol. 51, Issue 13, p. 3152-3155
  • DOI: 10.1002/anie.201108461

Electrocatalytic Oxidation of Formate by [Ni(P R 2 N R′ 2 ) 2 (CH 3 CN)] 2+ Complexes
journal, August 2011

  • Galan, Brandon R.; Schöffel, Julia; Linehan, John C.
  • Journal of the American Chemical Society, Vol. 133, Issue 32
  • DOI: 10.1021/ja204489e

Formate oxidation via β-deprotonation in [Ni(PR2NR′2)2(CH3CN)]2+ complexes
journal, January 2012

  • Seu, Candace S.; Appel, Aaron M.; Doud, Michael D.
  • Energy & Environmental Science, Vol. 5, Issue 4
  • DOI: 10.1039/c2ee03341k

Catalytic Oxidation of Alcohol via Nickel Phosphine Complexes with Pendant Amines
journal, August 2014

  • Weiss, Charles J.; Das, Parthapratim; Miller, Deanna L.
  • ACS Catalysis, Vol. 4, Issue 9
  • DOI: 10.1021/cs500853f

Nickel phosphine catalysts with pendant amines for electrocatalytic oxidation of alcohols
journal, January 2015

  • Weiss, Charles J.; Wiedner, Eric S.; Roberts, John A. S.
  • Chemical Communications, Vol. 51, Issue 28
  • DOI: 10.1039/C5CC01107H

Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination
journal, January 2015

  • Krause, Lennard; Herbst-Irmer, Regine; Sheldrick, George M.
  • Journal of Applied Crystallography, Vol. 48, Issue 1
  • DOI: 10.1107/S1600576714022985

IL MILIONE : a suite of computer programs for crystal structure solution of proteins
journal, May 2007

  • Burla, Maria C.; Caliandro, Rocco; Camalli, Mercedes
  • Journal of Applied Crystallography, Vol. 40, Issue 3
  • DOI: 10.1107/S0021889807010941

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Crystal structure refinement with SHELXL
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section C Structural Chemistry, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053229614024218

ORTEP -3 for Windows - a version of ORTEP -III with a Graphical User Interface (GUI)
journal, October 1997


OLEX2 : a complete structure solution, refinement and analysis program
journal, January 2009

  • Dolomanov, Oleg V.; Bourhis, Luc J.; Gildea, Richard J.
  • Journal of Applied Crystallography, Vol. 42, Issue 2
  • DOI: 10.1107/S0021889808042726

Computational Studies on Ethylene Addition to Nickel Bis(dithiolene)
journal, December 2011

  • Dang, Li; Yang, Xinzheng; Zhou, Jia
  • The Journal of Physical Chemistry A, Vol. 116, Issue 1
  • DOI: 10.1021/jp205971b

Density-functional approximation for the correlation energy of the inhomogeneous electron gas
journal, June 1986


Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids
journal, September 2003


Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr
journal, May 1989


Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
journal, January 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 44
  • DOI: 10.1039/b810189b

Effect of the damping function in dispersion corrected density functional theory
journal, March 2011

  • Grimme, Stefan; Ehrlich, Stephan; Goerigk, Lars
  • Journal of Computational Chemistry, Vol. 32, Issue 7
  • DOI: 10.1002/jcc.21759

Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

Mechanism of the Formation of Carboxylate from Alcohols and Water Catalyzed by a Bipyridine-Based Ruthenium Complex: A Computational Study
journal, December 2013

  • Li, Haixia; Hall, Michael B.
  • Journal of the American Chemical Society, Vol. 136, Issue 1
  • DOI: 10.1021/ja410541v