DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular Electrocatalysts for Oxidation of Hydrogen Using Earth-Abundant Metals: Shoving Protons Around with Proton Relays

Abstract

Sustainable, carbon-neutral energy is needed to supplant the worldwide reliance on fossil fuels, to address the persistent problem of increasing emissions of CO2. Solar and wind energy are intermittent, highlighting the need to develop energy storage on a huge scale. Electrocatalysts provide a way to convert between electrical energy generated by renewable energy sources and chemical energy in the form of chemical bonds. Here, the oxidation of hydrogen to give two electrons and two protons is carried out in fuel cells, but the typical catalyst is platinum, a precious metal of low earth-abundance and high cost. In nature, hydrogenases based on iron or iron/nickel reversibly oxidize hydrogen with remarkable efficiency and rates. Functional models of these enzymes are synthesized with the goal of achieving electrocatalytic H2 oxidation using inexpensive, earth-abundant metals along with a key feature identified in the [FeFe]-hydrogenase: an amine base positioned near the metal. The diphosphine ligands PR2NR'2 (1,5-diaza-3,7-diphosphacyclooctane with alkyl or aryl groups on the P and N) are used as ligands in Ni, Fe and Mn complexes. The pendant amines promote binding and heterolytic cleavage of H2, placing the hydride on the metal and the proton on the amine. The pendant amines also serve asmore » proton relays, accelerating intramolecular and intermolecular proton transfers. Electrochemical oxidations and deprotonations by an exogeneous amine base lead to catalytic cycles for oxidation of H2 (1 atm) at room temperature for catalysts derived from [Ni(PCy2NR'2)2]2+, CpC6F5Fe(PtBu2NBn2)H and MnH(PPh2NBn2)(bppm)(CO) [bppm = (PArF2)2CH2)]. The Mn cation [Mn(PPh2NBn2)(bppm)(CO)]+ mediates the rapid (>104 s-1 at -95 °C), reversible heterolytic cleavage of H2. Obtaining the optimal benefit of pendant amines incorporated into the ligand requires that the pendant amine be properly positioned to interact with a M-H or M(H2) bond. In addition, ligands are ideally selected such that the hydride acceptor ability of the metal and the basicity of a pendant are tuned to give low barriers for heterolytic cleavage of the H-H bond and for subsequent proton transfer reactions. Using these principles allows the rational design of electrocatalysts for H2 oxidation using earth-abundant metals.« less

Authors:
ORCiD logo [1];  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Molecular Electrocatalysis (CME)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1582563
Report Number(s):
PNNL-SA-108095
Journal ID: ISSN 0001-4842
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Accounts of Chemical Research
Additional Journal Information:
Journal Volume: 48; Journal Issue: 7; Journal ID: ISSN 0001-4842
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; hydrogen; oxidation; electrocatalysis

Citation Formats

Bullock, Ronald Morris, and Helm, Monte L. Molecular Electrocatalysts for Oxidation of Hydrogen Using Earth-Abundant Metals: Shoving Protons Around with Proton Relays. United States: N. p., 2015. Web. doi:10.1021/acs.accounts.5b00069.
Bullock, Ronald Morris, & Helm, Monte L. Molecular Electrocatalysts for Oxidation of Hydrogen Using Earth-Abundant Metals: Shoving Protons Around with Proton Relays. United States. https://doi.org/10.1021/acs.accounts.5b00069
Bullock, Ronald Morris, and Helm, Monte L. Tue . "Molecular Electrocatalysts for Oxidation of Hydrogen Using Earth-Abundant Metals: Shoving Protons Around with Proton Relays". United States. https://doi.org/10.1021/acs.accounts.5b00069. https://www.osti.gov/servlets/purl/1582563.
@article{osti_1582563,
title = {Molecular Electrocatalysts for Oxidation of Hydrogen Using Earth-Abundant Metals: Shoving Protons Around with Proton Relays},
author = {Bullock, Ronald Morris and Helm, Monte L.},
abstractNote = {Sustainable, carbon-neutral energy is needed to supplant the worldwide reliance on fossil fuels, to address the persistent problem of increasing emissions of CO2. Solar and wind energy are intermittent, highlighting the need to develop energy storage on a huge scale. Electrocatalysts provide a way to convert between electrical energy generated by renewable energy sources and chemical energy in the form of chemical bonds. Here, the oxidation of hydrogen to give two electrons and two protons is carried out in fuel cells, but the typical catalyst is platinum, a precious metal of low earth-abundance and high cost. In nature, hydrogenases based on iron or iron/nickel reversibly oxidize hydrogen with remarkable efficiency and rates. Functional models of these enzymes are synthesized with the goal of achieving electrocatalytic H2 oxidation using inexpensive, earth-abundant metals along with a key feature identified in the [FeFe]-hydrogenase: an amine base positioned near the metal. The diphosphine ligands PR2NR'2 (1,5-diaza-3,7-diphosphacyclooctane with alkyl or aryl groups on the P and N) are used as ligands in Ni, Fe and Mn complexes. The pendant amines promote binding and heterolytic cleavage of H2, placing the hydride on the metal and the proton on the amine. The pendant amines also serve as proton relays, accelerating intramolecular and intermolecular proton transfers. Electrochemical oxidations and deprotonations by an exogeneous amine base lead to catalytic cycles for oxidation of H2 (1 atm) at room temperature for catalysts derived from [Ni(PCy2NR'2)2]2+, CpC6F5Fe(PtBu2NBn2)H and MnH(PPh2NBn2)(bppm)(CO) [bppm = (PArF2)2CH2)]. The Mn cation [Mn(PPh2NBn2)(bppm)(CO)]+ mediates the rapid (>104 s-1 at -95 °C), reversible heterolytic cleavage of H2. Obtaining the optimal benefit of pendant amines incorporated into the ligand requires that the pendant amine be properly positioned to interact with a M-H or M(H2) bond. In addition, ligands are ideally selected such that the hydride acceptor ability of the metal and the basicity of a pendant are tuned to give low barriers for heterolytic cleavage of the H-H bond and for subsequent proton transfer reactions. Using these principles allows the rational design of electrocatalysts for H2 oxidation using earth-abundant metals.},
doi = {10.1021/acs.accounts.5b00069},
journal = {Accounts of Chemical Research},
number = 7,
volume = 48,
place = {United States},
year = {Tue Jun 16 00:00:00 EDT 2015},
month = {Tue Jun 16 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 123 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes
journal, January 2011

  • Morozan, Adina; Jousselme, Bruno; Palacin, Serge
  • Energy & Environmental Science, Vol. 4, Issue 4
  • DOI: 10.1039/c0ee00601g

A review on non-precious metal electrocatalysts for PEM fuel cells
journal, January 2011

  • Chen, Zhongwei; Higgins, Drew; Yu, Aiping
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c0ee00558d

Platinum Availability for Future Automotive Technologies
journal, November 2012

  • Alonso, Elisa; Field, Frank R.; Kirchain, Randolph E.
  • Environmental Science & Technology, Vol. 46, Issue 23
  • DOI: 10.1021/es301110e

Hydrogenases
journal, March 2014

  • Lubitz, Wolfgang; Ogata, Hideaki; Rüdiger, Olaf
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr4005814

Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases
journal, October 2007

  • Fontecilla-Camps, Juan C.; Volbeda, Anne; Cavazza, Christine
  • Chemical Reviews, Vol. 107, Issue 10
  • DOI: 10.1021/cr050195z

A Mixed-Valent, Fe(II)Fe(I), Diiron Complex Reproduces the Unique Rotated State of the [FeFe]Hydrogenase Active Site
journal, June 2007

  • Liu, Tianbiao; Darensbourg, Marcetta Y.
  • Journal of the American Chemical Society, Vol. 129, Issue 22
  • DOI: 10.1021/ja071851a

Catalytic Activation of H 2 under Mild Conditions by an [FeFe]-Hydrogenase Model via an Active μ-Hydride Species
journal, September 2013

  • Wang, Ning; Wang, Mei; Wang, Ying
  • Journal of the American Chemical Society, Vol. 135, Issue 37
  • DOI: 10.1021/ja408376t

Small molecule mimics of hydrogenases: hydrides and redox
journal, January 2009

  • Gloaguen, Frédéric; Rauchfuss, Thomas B.
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B801796B

Redox-Switched Oxidation of Dihydrogen Using a Non-Innocent Ligand
journal, January 2008

  • Ringenberg, Mark R.; Kokatam, Swarna Latha; Heiden, Zachariah M.
  • Journal of the American Chemical Society, Vol. 130, Issue 3
  • DOI: 10.1021/ja076801k

Combining acid–base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase
journal, October 2011

  • Camara, James M.; Rauchfuss, Thomas B.
  • Nature Chemistry, Vol. 4, Issue 1
  • DOI: 10.1038/nchem.1180

Electrons from hydrogen
journal, January 2009


A Dinuclear Ni( -H)Ru Complex Derived from H2
journal, April 2007


A Functional [NiFe]Hydrogenase Mimic That Catalyzes Electron and Hydride Transfer from H2
journal, February 2013


[NiFe]Hydrogenase from Citrobacter sp. S-77 Surpasses Platinum as an Electrode for H 2 Oxidation Reaction
journal, June 2014

  • Matsumoto, Takahiro; Eguchi, Shigenobu; Nakai, Hidetaka
  • Angewandte Chemie International Edition, Vol. 53, Issue 34
  • DOI: 10.1002/anie.201404701

Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis
journal, July 2008

  • Cracknell, James A.; Vincent, Kylie A.; Armstrong, Fraser A.
  • Chemical Reviews, Vol. 108, Issue 7
  • DOI: 10.1021/cr0680639

Measurement of the Hydride Donor Abilities of [HM(diphosphine) 2 ] + Complexes (M = Ni, Pt) by Heterolytic Activation of Hydrogen
journal, March 2002

  • Curtis, Calvin J.; Miedaner, Alex; Ellis, William W.
  • Journal of the American Chemical Society, Vol. 124, Issue 9
  • DOI: 10.1021/ja0116829

Mechanism of Heterolysis of H 2 by an Unsaturated d 8 Nickel Center: via Tetravalent Nickel?
journal, January 2010

  • He, Tao; Tsvetkov, Nikolay P.; Andino, José G.
  • Journal of the American Chemical Society, Vol. 132, Issue 3
  • DOI: 10.1021/ja908674x

Thermally stable N2 and H2 adducts of cationic nickel(ii)
journal, January 2012

  • Tsay, Charlene; Peters, Jonas C.
  • Chemical Science, Vol. 3, Issue 4
  • DOI: 10.1039/c2sc01033j

Synthesis, Structure, and Reactivity of a Nickel Dihydrogen Complex
journal, November 2012

  • Connelly, Samantha J.; Zimmerman, Amanda C.; Kaminsky, Werner
  • Chemistry - A European Journal, Vol. 18, Issue 50
  • DOI: 10.1002/chem.201203675

Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays
journal, January 2006

  • Wilson, Aaron D.; Newell, Rachel H.; McNevin, Michael J.
  • Journal of the American Chemical Society, Vol. 128, Issue 1
  • DOI: 10.1021/ja056442y

Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases
journal, March 2007

  • Wilson, A. D.; Shoemaker, R. K.; Miedaner, A.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 17
  • DOI: 10.1073/pnas.0608928104

Two Pathways for Electrocatalytic Oxidation of Hydrogen by a Nickel Bis(diphosphine) Complex with Pendant Amines in the Second Coordination Sphere
journal, June 2013

  • Yang, Jenny Y.; Smith, Stuart E.; Liu, Tianbiao
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja400705a

Stabilization of Nickel Complexes with Ni 0 ···H–N Bonding Interactions Using Sterically Demanding Cyclic Diphosphine Ligands
journal, December 2011

  • Wiedner, Eric S.; Yang, Jenny Y.; Chen, Shentan
  • Organometallics, Vol. 31, Issue 1
  • DOI: 10.1021/om200709z

The Role of Pendant Amines in the Breaking and Forming of Molecular Hydrogen Catalyzed by Nickel Complexes
journal, April 2012

  • Raugei, Simone; Chen, Shentan; Ho, Ming-Hsun
  • Chemistry - A European Journal, Vol. 18, Issue 21
  • DOI: 10.1002/chem.201103346

Moving Protons with Pendant Amines: Proton Mobility in a Nickel Catalyst for Oxidation of Hydrogen
journal, September 2011

  • O’Hagan, Molly; Shaw, Wendy J.; Raugei, Simone
  • Journal of the American Chemical Society, Vol. 133, Issue 36, p. 14301-14312
  • DOI: 10.1021/ja201838x

Proton Delivery and Removal in [Ni(P R 2 N R 2 ) 2 ] 2+ Hydrogen Production and Oxidation Catalysts
journal, November 2012

  • O’Hagan, Molly; Ho, Ming-Hsun; Yang, Jenny Y.
  • Journal of the American Chemical Society, Vol. 134, Issue 47
  • DOI: 10.1021/ja307413x

Solvent and electrolyte effects on Ni(P R 2 N R′ 2 ) 2 -catalyzed electrochemical oxidation of hydrogen
journal, January 2014

  • Stolley, Ryan M.; Darmon, Jonathan M.; Helm, Monte L.
  • Chem. Commun., Vol. 50, Issue 28
  • DOI: 10.1039/C4CC00295D

Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production
journal, April 2012

  • Horvath, S.; Fernandez, L. E.; Soudackov, A. V.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1118333109

Proton-Coupled Electron Transfer
journal, April 2012

  • Weinberg, David R.; Gagliardi, Christopher J.; Hull, Jonathan F.
  • Chemical Reviews, Vol. 112, Issue 7
  • DOI: 10.1021/cr200177j

Mechanistic Insights into Catalytic H 2 Oxidation by Ni Complexes Containing a Diphosphine Ligand with a Positioned Amine Base
journal, April 2009

  • Yang, Jenny Y.; Bullock, R. Morris; Shaw, Wendy J.
  • Journal of the American Chemical Society, Vol. 131, Issue 16
  • DOI: 10.1021/ja900483x

Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic
journal, February 2012

  • Smith, Stuart E.; Yang, Jenny Y.; DuBois, Daniel L.
  • Angewandte Chemie International Edition, Vol. 51, Issue 13, p. 3152-3155
  • DOI: 10.1002/anie.201108461

Amino acid modified Ni catalyst exhibits reversible H 2 oxidation/production over a broad pH range at elevated temperatures
journal, November 2014

  • Dutta, Arnab; DuBois, Daniel L.; Roberts, John A. S.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 46
  • DOI: 10.1073/pnas.1416381111

The organometallic active site of [Fe]hydrogenase: Models and entatic states
journal, March 2003

  • Darensbourg, M. Y.; Lyon, E. J.; Zhao, X.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 7
  • DOI: 10.1073/pnas.0536955100

Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases
journal, June 2009

  • Tard, Cédric; Pickett, Christopher J.
  • Chemical Reviews, Vol. 109, Issue 6
  • DOI: 10.1021/cr800542q

Synthesis, Characterization, and Reactivity of Fe Complexes Containing Cyclic Diazadiphosphine Ligands: The Role of the Pendant Base in Heterolytic Cleavage of H 2
journal, March 2012

  • Liu, Tianbiao; Chen, Shentan; O’Hagan, Molly J.
  • Journal of the American Chemical Society, Vol. 134, Issue 14
  • DOI: 10.1021/ja211193j

Perfluoroaryl-substituted cyclopentadienyl complexes of transition metals
journal, May 2006


An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen
journal, February 2013

  • Liu, Tianbiao; DuBois, Daniel L.; Bullock, R. Morris
  • Nature Chemistry, Vol. 5, Issue 3
  • DOI: 10.1038/nchem.1571

Iron Complexes Bearing Diphosphine Ligands with Positioned Pendant Amines as Electrocatalysts for the Oxidation of H 2
journal, May 2015

  • Liu, Tianbiao; Liao, Qian; O’Hagan, Molly
  • Organometallics, Vol. 34, Issue 12
  • DOI: 10.1021/om501289f

Heterolytic Cleavage of Hydrogen by an Iron Hydrogenase Model: An Fe-H⋅⋅⋅H-N Dihydrogen Bond Characterized by Neutron Diffraction
journal, April 2014

  • Liu, Tianbiao; Wang, Xiaoping; Hoffmann, Christina
  • Angewandte Chemie International Edition, Vol. 53, Issue 21
  • DOI: 10.1002/anie.201402090

Dihydrogen Bonding:  Structures, Energetics, and Dynamics
journal, July 2001

  • Custelcean, Radu; Jackson, James E.
  • Chemical Reviews, Vol. 101, Issue 7
  • DOI: 10.1021/cr000021b

Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase
journal, January 2015

  • Ogata, Hideaki; Nishikawa, Koji; Lubitz, Wolfgang
  • Nature, Vol. 520, Issue 7548
  • DOI: 10.1038/nature14110

Iron Complexes for the Electrocatalytic Oxidation of Hydrogen: Tuning Primary and Secondary Coordination Spheres
journal, March 2014

  • Darmon, Jonathan M.; Raugei, Simone; Liu, Tianbiao
  • ACS Catalysis, Vol. 4, Issue 4
  • DOI: 10.1021/cs500290w

Synthesis, Structures, and Reactions of Manganese Complexes Containing Diphosphine Ligands with Pendant Amines
journal, October 2010

  • Welch, Kevin D.; Dougherty, William G.; Kassel, W. Scott
  • Organometallics, Vol. 29, Issue 20
  • DOI: 10.1021/om100668e

Rapid, Reversible Heterolytic Cleavage of Bound H 2
journal, July 2013

  • Hulley, Elliott B.; Welch, Kevin D.; Appel, Aaron M.
  • Journal of the American Chemical Society, Vol. 135, Issue 32
  • DOI: 10.1021/ja405755j

Heterolytic cleavage of H 2 by bifunctional manganese( i ) complexes: impact of ligand dynamics, electrophilicity, and base positioning
journal, January 2014

  • Hulley, Elliott B.; Helm, Monte L.; Bullock, R. Morris
  • Chem. Sci., Vol. 5, Issue 12
  • DOI: 10.1039/C4SC01801J

Production of hydrogen by electrocatalysis: making the H–H bond by combining protons and hydrides
journal, January 2014

  • Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.
  • Chem. Commun., Vol. 50, Issue 24
  • DOI: 10.1039/C3CC46135A

Works referencing / citing this record:

Anion control of tautomeric equilibria: Fe–H vs. N–H influenced by NH⋯F hydrogen bonding
journal, January 2019

  • Chambers, Geoffrey M.; Johnson, Samantha I.; Raugei, Simone
  • Chemical Science, Vol. 10, Issue 5
  • DOI: 10.1039/c8sc04239j

Z−H Bond Activation in (Di)hydrogen Bonding as a Way to Proton/Hydride Transfer and H 2 Evolution
journal, December 2017

  • Belkova, Natalia V.; Filippov, Oleg A.; Shubina, Elena S.
  • Chemistry - A European Journal, Vol. 24, Issue 7
  • DOI: 10.1002/chem.201704203

Dinuclear Manganese Carbonyl Complexes: Electrocatalytic Reduction of Protons to Dihydrogen
journal, February 2019

  • Kaim, Vishakha; Natarajan, Mookan; Kaur‐Ghumaan, Sandeep
  • ChemistrySelect, Vol. 4, Issue 5
  • DOI: 10.1002/slct.201803754

Catalytic cyclization and competitive deactivation with Ru(P R 2 N R′ 2 ) complexes
journal, January 2016

  • Stubbs, J. M.; Bow, J. -P. J.; Hazlehurst, R. J.
  • Dalton Transactions, Vol. 45, Issue 43
  • DOI: 10.1039/c6dt03694e

A macrocyclic ‘Co 0 ’ complex: the relevance of ligand non-innocence to reactivity
journal, January 2017

  • Kaspar, Manuel; Altmann, Philipp J.; Pöthig, Alexander
  • Chemical Communications, Vol. 53, Issue 53
  • DOI: 10.1039/c7cc02239e

H 2 Oxidation Electrocatalysis Enabled by Metal-to-Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction
journal, September 2018

  • Chambers, Geoffrey M.; Wiedner, Eric S.; Bullock, R. Morris
  • Angewandte Chemie International Edition, Vol. 57, Issue 41
  • DOI: 10.1002/anie.201807510

Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts
journal, May 2019

  • Agirrezabal-Telleria, Iker; Luz, Ignacio; Ortuño, Manuel A.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-10013-6

Catalyst Pendent-Base Effects on Cyclization of Alkynyl Amines
journal, July 2018

  • Stubbs, James M.; Chapple, Devon E.; Boyle, Paul D.
  • ChemCatChem, Vol. 10, Issue 17
  • DOI: 10.1002/cctc.201800713

Facile P−C/C−H Bond-Cleavage Reactivity of Nickel Bis(diphosphine) Complexes
journal, June 2016

  • Zhang, Shaoguang; Li, Haixia; Appel, Aaron M.
  • Chemistry - A European Journal, Vol. 22, Issue 28
  • DOI: 10.1002/chem.201601469

First-row transition metal complexes of ENENES ligands: the ability of the thioether donor to impact the coordination chemistry
journal, January 2016

  • Dub, Pavel A.; Scott, Brian L.; Gordon, John C.
  • Dalton Transactions, Vol. 45, Issue 4
  • DOI: 10.1039/c5dt03855c

Evaluation of attractive interactions in the second coordination sphere of iron complexes containing pendant amines
journal, January 2019

  • Liao, Qian; Liu, Tianbiao; Johnson, Samantha I.
  • Dalton Transactions, Vol. 48, Issue 15
  • DOI: 10.1039/c9dt00708c

Catalytic Activity of Thiolate-Bridged Diruthenium Complexes Bearing Pendent Ether Moieties in the Oxidation of Molecular Dihydrogen
journal, December 2016

  • Yuki, Masahiro; Sakata, Ken; Kikuchi, Shoma
  • Chemistry - A European Journal, Vol. 23, Issue 5
  • DOI: 10.1002/chem.201604974

Optimizing ligand structure for low-loading and fast catalysis for alkynyl-alcohol and -amine cyclization
journal, January 2019

  • Stubbs, James M.; Bridge, Benjamin J.; Blacquiere, Johanna M.
  • Dalton Transactions, Vol. 48, Issue 22
  • DOI: 10.1039/c9dt01870k

Photochemically Driven Reverse Water-Gas Shift at Ambient Conditions mediated by a Nickel Pincer Complex
journal, July 2018

  • Schneck, Felix; Schendzielorz, Florian; Hatami, Nareh
  • Angewandte Chemie, Vol. 130, Issue 44
  • DOI: 10.1002/ange.201803396

Syntheses, crystal structures, and electrochemical studies of dinuclear coordination compounds with the Fe 2 (CO) 6 core
journal, October 2016


Electrocatalytic H 2 Evolution by the Co‐Mabiq Complex Requires Tempering of the Redox‐Active Ligand
journal, June 2019

  • Tok, G. Ceren; Freiberg, Anna T. S.; Gasteiger, Hubert A.
  • ChemCatChem, Vol. 11, Issue 16
  • DOI: 10.1002/cctc.201900953

H 2 Oxidation Electrocatalysis Enabled by Metal-to-Metal Hydrogen Atom Transfer: A Homolytic Approach to a Heterolytic Reaction
journal, September 2018

  • Chambers, Geoffrey M.; Wiedner, Eric S.; Bullock, R. Morris
  • Angewandte Chemie, Vol. 130, Issue 41
  • DOI: 10.1002/ange.201807510

Thermodynamic and kinetic studies of H 2 and N 2 binding to bimetallic nickel-group 13 complexes and neutron structure of a Ni(η 2 -H 2 ) adduct
journal, January 2019

  • Cammarota, Ryan C.; Xie, Jing; Burgess, Samantha A.
  • Chemical Science, Vol. 10, Issue 29
  • DOI: 10.1039/c9sc02018g

The broadening reach of frustrated Lewis pair chemistry
journal, December 2016


Manganese Complexes: Hydrogen Generation and Oxidation: Manganese Complexes: Hydrogen Generation and Oxidation
journal, November 2019

  • Kaim, Vishakha; Kaur-Ghumaan, Sandeep
  • European Journal of Inorganic Chemistry, Vol. 2019, Issue 48
  • DOI: 10.1002/ejic.201900988

On the concept of frustrated Lewis pairs
journal, July 2017

  • Fontaine, Frédéric-Georges; Stephan, Douglas W.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 375, Issue 2101
  • DOI: 10.1098/rsta.2017.0004

Photochemically Driven Reverse Water-Gas Shift at Ambient Conditions mediated by a Nickel Pincer Complex
journal, July 2018

  • Schneck, Felix; Schendzielorz, Florian; Hatami, Nareh
  • Angewandte Chemie International Edition, Vol. 57, Issue 44
  • DOI: 10.1002/anie.201803396

Gas reactions under intrapore condensation regime within tailored metal–organic framework catalysts
journal, May 2019

  • Agirrezabal-Telleria, Iker; Luz, Ignacio; Ortuño, Manuel A.
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-10013-6