DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment

Abstract

Large volcanic eruptions reaching the stratosphere have caused marked perturbations to the global climate including cooling at the Earth's surface, changes in large-scale circulation and precipitation patterns and marked temporary reductions in global ocean heat content. Many studies have investigated these effects using climate models; however, uncertainties remain in the modelled response to these eruptions. This is due in part to the diversity of forcing datasets that are used to prescribe the distribution of stratospheric aerosols resulting from these volcanic eruptions, as well as uncertainties in optical property derivations from these datasets. To improve this situation for the sixth phase of the Coupled Model Intercomparison Project (CMIP6), a two-step process was undertaken. First, a combined stratospheric aerosol dataset, the Global Space-based Stratospheric Aerosol Climatology (GloSSAC; 1979–2016), was constructed. Next, GloSSAC, along with information from ice cores and Sun photometers, was used to generate aerosol distributions, characteristics and optical properties to construct a more consistent stratospheric aerosol forcing dataset for models participating in CMIP6. This “version 3” of the stratospheric aerosol forcing has been endorsed for use in all contributing CMIP6 simulations. Recent updates to the underlying GloSSAC from version 1 to version 1.1 affected the 1991–1994 period and necessitated an update to themore » stratospheric aerosol forcing from version 3 to version 4. As version 3 remains the official CMIP6 input, quantification of the impact on radiative forcing and climate is both relevant and timely for interpreting results from experiments such as the CMIP6 historical simulations. This study uses two models, the Canadian Earth System Model version 5 (CanESM5) and the Energy Exascale Earth System Model (E3SM) Atmosphere Model version 1 (EAMv1), to estimate the difference in instantaneous radiative forcing in simulated post-Pinatubo climate response when using version 4 instead of version 3. Differences in temperature, precipitation and radiative forcings are generally found to be small compared to internal variability. An exception to this is differences in monthly temperature anomalies near 24 km altitude in the tropics, which can be as large as 3 °C following the eruption of Mt. Pinatubo.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2]; ORCiD logo [3];  [3]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [3]
  1. Univ. of Saskatchewan, Saskatoon, SK (Canada)
  2. Environment Canada, Victoria, BC (Canada)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Biological and Environmental Research (BER); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1673200
Report Number(s):
LLNL-JRNL-800287
Journal ID: ISSN 1991-9603; 1003696
Grant/Contract Number:  
AC52-07NA27344; 18-ERD-054
Resource Type:
Accepted Manuscript
Journal Name:
Geoscientific Model Development (Online)
Additional Journal Information:
Journal Name: Geoscientific Model Development (Online); Journal Volume: 13; Journal Issue: 10; Journal ID: ISSN 1991-9603
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES

Citation Formats

Rieger, Landon A., Cole, Jason N. S., Fyfe, John C., Po-Chedley, Stephen, Cameron-Smith, Philip J., Durack, Paul J., Gillett, Nathan P., and Tang, Qi. Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment. United States: N. p., 2020. Web. doi:10.5194/gmd-13-4831-2020.
Rieger, Landon A., Cole, Jason N. S., Fyfe, John C., Po-Chedley, Stephen, Cameron-Smith, Philip J., Durack, Paul J., Gillett, Nathan P., & Tang, Qi. Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment. United States. https://doi.org/10.5194/gmd-13-4831-2020
Rieger, Landon A., Cole, Jason N. S., Fyfe, John C., Po-Chedley, Stephen, Cameron-Smith, Philip J., Durack, Paul J., Gillett, Nathan P., and Tang, Qi. Fri . "Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment". United States. https://doi.org/10.5194/gmd-13-4831-2020. https://www.osti.gov/servlets/purl/1673200.
@article{osti_1673200,
title = {Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment},
author = {Rieger, Landon A. and Cole, Jason N. S. and Fyfe, John C. and Po-Chedley, Stephen and Cameron-Smith, Philip J. and Durack, Paul J. and Gillett, Nathan P. and Tang, Qi},
abstractNote = {Large volcanic eruptions reaching the stratosphere have caused marked perturbations to the global climate including cooling at the Earth's surface, changes in large-scale circulation and precipitation patterns and marked temporary reductions in global ocean heat content. Many studies have investigated these effects using climate models; however, uncertainties remain in the modelled response to these eruptions. This is due in part to the diversity of forcing datasets that are used to prescribe the distribution of stratospheric aerosols resulting from these volcanic eruptions, as well as uncertainties in optical property derivations from these datasets. To improve this situation for the sixth phase of the Coupled Model Intercomparison Project (CMIP6), a two-step process was undertaken. First, a combined stratospheric aerosol dataset, the Global Space-based Stratospheric Aerosol Climatology (GloSSAC; 1979–2016), was constructed. Next, GloSSAC, along with information from ice cores and Sun photometers, was used to generate aerosol distributions, characteristics and optical properties to construct a more consistent stratospheric aerosol forcing dataset for models participating in CMIP6. This “version 3” of the stratospheric aerosol forcing has been endorsed for use in all contributing CMIP6 simulations. Recent updates to the underlying GloSSAC from version 1 to version 1.1 affected the 1991–1994 period and necessitated an update to the stratospheric aerosol forcing from version 3 to version 4. As version 3 remains the official CMIP6 input, quantification of the impact on radiative forcing and climate is both relevant and timely for interpreting results from experiments such as the CMIP6 historical simulations. This study uses two models, the Canadian Earth System Model version 5 (CanESM5) and the Energy Exascale Earth System Model (E3SM) Atmosphere Model version 1 (EAMv1), to estimate the difference in instantaneous radiative forcing in simulated post-Pinatubo climate response when using version 4 instead of version 3. Differences in temperature, precipitation and radiative forcings are generally found to be small compared to internal variability. An exception to this is differences in monthly temperature anomalies near 24 km altitude in the tropics, which can be as large as 3 °C following the eruption of Mt. Pinatubo.},
doi = {10.5194/gmd-13-4831-2020},
journal = {Geoscientific Model Development (Online)},
number = 10,
volume = 13,
place = {United States},
year = {Fri Oct 09 00:00:00 EDT 2020},
month = {Fri Oct 09 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Figure 1 Figure 1: The top panel shows aerosol optical depth in the stratosphere (SAOD) at 550 nm from the v3 dataset. The bottom panel shows the absolute difference between the versions, computed as v4 -v3, during this same time period. The triangle marks the Pinatubo eruption at 14° N on Junemore » 15, 1991.« less

Save / Share:

Works referenced in this record:

Detection of volcanic influence on global precipitation: VOLCANIC INFLUENCE ON PRECIPITATION
journal, June 2004

  • Gillett, N. P.; Weaver, A. J.; Zwiers, F. W.
  • Geophysical Research Letters, Vol. 31, Issue 12
  • DOI: 10.1029/2004GL020044

ENSO response to high-latitude volcanic eruptions in the Northern Hemisphere: The role of the initial conditions: ENSO Response to High-Latitude Volcanic Eruptions
journal, August 2016

  • Pausata, Francesco S. R.; Karamperidou, Christina; Caballero, Rodrigo
  • Geophysical Research Letters, Vol. 43, Issue 16
  • DOI: 10.1002/2016GL069575

Volcanic Radiative Forcing From 1979 to 2015
journal, November 2018

  • Schmidt, Anja; Mills, Michael J.; Ghan, Steven
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 22
  • DOI: 10.1029/2018JD028776

A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model
journal, October 2008

  • Hurrell, James W.; Hack, James J.; Shea, Dennis
  • Journal of Climate, Vol. 21, Issue 19
  • DOI: 10.1175/2008JCLI2292.1

Using analysis increments to estimate atmospheric heating rates following volcanic eruptions
journal, March 2001

  • Andersen, Uffe J.; Kaas, Eigil; Alpert, Pinhas
  • Geophysical Research Letters, Vol. 28, Issue 6
  • DOI: 10.1029/2000GL012418

Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
journal, January 2016

  • Eyring, Veronika; Bony, Sandrine; Meehl, Gerald A.
  • Geoscientific Model Development, Vol. 9, Issue 5
  • DOI: 10.5194/gmd-9-1937-2016

Surface response to stratospheric aerosol changes in a coupled atmosphere-ocean model: SURFACE RESPONSE TO AEROSOL CHANGE
journal, February 2013

  • Fyfe, J. C.; von Salzen, K.; Cole, J. N. S.
  • Geophysical Research Letters, Vol. 40, Issue 3
  • DOI: 10.1002/grl.50156

Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa
journal, October 2017


Understanding Recent Stratospheric Climate Change
journal, April 2009


Quantifying Stratospheric Temperature Signals and Climate Imprints From Post‐2000 Volcanic Eruptions
journal, November 2019

  • Stocker, Matthias; Ladstädter, Florian; Wilhelmsen, Hallgeir
  • Geophysical Research Letters, Vol. 46, Issue 21
  • DOI: 10.1029/2019GL084396

The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design
journal, January 2018

  • Timmreck, Claudia; Mann, Graham W.; Aquila, Valentina
  • Geoscientific Model Development, Vol. 11, Issue 7
  • DOI: 10.5194/gmd-11-2581-2018

An Overview of CMIP5 and the Experiment Design
journal, April 2012

  • Taylor, Karl E.; Stouffer, Ronald J.; Meehl, Gerald A.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 4
  • DOI: 10.1175/BAMS-D-11-00094.1

Robust Wind and Precipitation Responses to the Mount Pinatubo Eruption, as Simulated in the CMIP5 Models
journal, July 2016

  • Barnes, Elizabeth A.; Solomon, Susan; Polvani, Lorenzo M.
  • Journal of Climate, Vol. 29, Issue 13
  • DOI: 10.1175/JCLI-D-15-0658.1

Radiative Climate Forcing by the Mount Pinatubo Eruption
journal, March 1993


Construction of the RSS V3.2 Lower-Tropospheric Temperature Dataset from the MSU and AMSU Microwave Sounders
journal, August 2009

  • Mears, Carl A.; Wentz, Frank J.
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 8
  • DOI: 10.1175/2009JTECHA1237.1

Stratospheric aerosol-Observations, processes, and impact on climate: Stratospheric Aerosol
journal, May 2016

  • Kremser, Stefanie; Thomason, Larry W.; von Hobe, Marc
  • Reviews of Geophysics, Vol. 54, Issue 2
  • DOI: 10.1002/2015RG000511

Toward Standardized Data Sets for Climate Model Experimentation
journal, July 2018


Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends
journal, January 2010

  • Gettelman, A.; Hegglin, M. I.; Son, S. -W.
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD013638

Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of El Chichón and Pinatubo
journal, December 1992

  • Dutton, Ellsworth G.; Christy, John R.
  • Geophysical Research Letters, Vol. 19, Issue 23
  • DOI: 10.1029/92GL02495

The chemical and radiative effects of the Mount Pinatubo eruption
journal, January 1994

  • Kinnison, Douglas E.; Grant, Keith E.; Connell, Peter S.
  • Journal of Geophysical Research, Vol. 99, Issue D12
  • DOI: 10.1029/94JD02318

A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate: VOLCANIC FORCING DATASET OF 20TH CENTURY
journal, June 2003

  • Ammann, Caspar M.; Meehl, Gerald A.; Washington, Warren M.
  • Geophysical Research Letters, Vol. 30, Issue 12
  • DOI: 10.1029/2003GL016875

Re-evaluation of SO 2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors : SATELLITE STUDY OF 15 JUNE 1991 PINATUBO SO
journal, April 2004

  • Guo, Song; Bluth, Gregg J. S.; Rose, William I.
  • Geochemistry, Geophysics, Geosystems, Vol. 5, Issue 4
  • DOI: 10.1029/2003GC000654

The Persistently Variable "Background" Stratospheric Aerosol Layer and Global Climate Change
journal, July 2011


Stratospheric variability and tropospheric ozone
journal, January 2009

  • Hsu, Juno; Prather, Michael J.
  • Journal of Geophysical Research, Vol. 114, Issue D6
  • DOI: 10.1029/2008JD010942

The importance of ENSO phase during volcanic eruptions for detection and attribution
journal, March 2016

  • Lehner, Flavio; Schurer, Andrew P.; Hegerl, Gabriele C.
  • Geophysical Research Letters, Vol. 43, Issue 6
  • DOI: 10.1002/2016GL067935

A New Volcanic Stratospheric Sulfate Aerosol Forcing Emulator (EVA_H): Comparison With Interactive Stratospheric Aerosol Models
journal, February 2020

  • Aubry, Thomas J.; Toohey, Matthew; Marshall, Lauren
  • Journal of Geophysical Research: Atmospheres, Vol. 125, Issue 3
  • DOI: 10.1029/2019JD031303

Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content
journal, November 2005

  • Church, John A.; White, Neil J.; Arblaster, Julie M.
  • Nature, Vol. 438, Issue 7064
  • DOI: 10.1038/nature04237

Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing: TEMPERATURE AND PRECIPITATION TRENDS
journal, December 2003

  • Broccoli, Anthony J.; Dixon, Keith W.; Delworth, Thomas L.
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D24
  • DOI: 10.1029/2003JD003812

An Overview of the Atmospheric Component of the Energy Exascale Earth System Model
journal, August 2019

  • Rasch, P. J.; Xie, S.; Ma, P. ‐L.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 8
  • DOI: 10.1029/2019MS001629

A Satellite-Derived Lower-Tropospheric Atmospheric Temperature Dataset Using an Optimized Adjustment for Diurnal Effects
journal, October 2017


Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions: VOLCANIC IMPACTS IN THE CMIP5 MODELS
journal, September 2012

  • Driscoll, Simon; Bozzo, Alessio; Gray, Lesley J.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D17
  • DOI: 10.1029/2012JD017607

Potential climate impact of Mount Pinatubo eruption
journal, January 1992

  • Hansen, James; Lacis, Andrew; Ruedy, Reto
  • Geophysical Research Letters, Vol. 19, Issue 2
  • DOI: 10.1029/91GL02788

Microphysical simulations of large volcanic eruptions: Pinatubo and Toba: MICROPHYSICS OF PINATUBO/TOBA ERUPTIONS
journal, February 2013

  • English, Jason M.; Toon, Owen B.; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 4
  • DOI: 10.1002/jgrd.50196

Buffering of stratospheric circulation by changing amounts of tropical ozone a Pinatubo Case Study
journal, October 1992

  • Kinne, S.; Toon, O. B.; Prather, M. J.
  • Geophysical Research Letters, Vol. 19, Issue 19
  • DOI: 10.1029/92GL01937

Proxy evidence for an El Niño-like response to volcanic forcing
journal, November 2003

  • Brad Adams, J.; Mann, Michael E.; Ammann, Caspar M.
  • Nature, Vol. 426, Issue 6964
  • DOI: 10.1038/nature02101

Impacts of a Pinatubo-size volcanic eruption on ENSO: VOLCANIC IMPACTS ON ENSO
journal, January 2017

  • Predybaylo, Evgeniya; Stenchikov, Georgiy L.; Wittenberg, Andrew T.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 2
  • DOI: 10.1002/2016JD025796

Volcanic contribution to decadal changes in tropospheric temperature
journal, February 2014

  • Santer, Benjamin D.; Bonfils, Céline; Painter, Jeffrey F.
  • Nature Geoscience, Vol. 7, Issue 3
  • DOI: 10.1038/ngeo2098

Stratospheric aerosol optical depths, 1850–1990
journal, January 1993

  • Sato, Makiko; Hansen, James E.; McCormick, M. Patrick
  • Journal of Geophysical Research, Vol. 98, Issue D12
  • DOI: 10.1029/93JD02553

Climate forcing by the volcanic eruption of Mount Pinatubo
journal, January 2005


Aerosol microphysics simulations of the Mt.~Pinatubo eruption with the UM-UKCA composition-climate model
journal, January 2014

  • Dhomse, S. S.; Emmerson, K. M.; Mann, G. W.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 20
  • DOI: 10.5194/acp-14-11221-2014

Radiative impact of the Mount Pinatubo volcanic eruption: Lower stratospheric response
journal, October 2000

  • Ramachandran, S.; Ramaswamy, V.; Stenchikov, Georgiy L.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D19
  • DOI: 10.1029/2000JD900355

Total volcanic stratospheric aerosol optical depths and implications for global climate change: Uncertainty in volcanic climate forcing
journal, November 2014

  • Ridley, D. A.; Solomon, S.; Barnes, J. E.
  • Geophysical Research Letters, Vol. 41, Issue 22
  • DOI: 10.1002/2014GL061541

Construction of the Remote Sensing Systems V3.2 Atmospheric Temperature Records from the MSU and AMSU Microwave Sounders
journal, June 2009

  • Mears, Carl A.; Wentz, Frank J.
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 6
  • DOI: 10.1175/2008JTECHA1176.1

The Canadian Earth System Model version 5 (CanESM5.0.3)
journal, January 2019

  • Swart, Neil C.; Cole, Jason N. S.; Kharin, Viatcheslav V.
  • Geoscientific Model Development, Vol. 12, Issue 11
  • DOI: 10.5194/gmd-12-4823-2019

A global space-based stratospheric aerosol climatology: 1979–2016
journal, January 2018

  • Thomason, Larry W.; Ernest, Nicholas; Millán, Luis
  • Earth System Science Data, Vol. 10, Issue 1
  • DOI: 10.5194/essd-10-469-2018

Comparison of Radiosonde and GCM Vertical Temperature Trend Profiles: Effects of Dataset Choice and Data Homogenization*
journal, October 2008


Volcanic and Solar Forcing of the Tropical Pacific over the Past 1000 Years
journal, February 2005

  • Mann, Michael E.; Cane, Mark A.; Zebiak, Stephen E.
  • Journal of Climate, Vol. 18, Issue 3
  • DOI: 10.1175/JCLI-3276.1

Improved Simulation of the QBO in E3SMv1
journal, November 2019

  • Richter, Jadwiga H.; Chen, Chih‐Chieh; Tang, Qi
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 11
  • DOI: 10.1029/2019MS001763

Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions
journal, January 2013

  • Arfeuille, F.; Luo, B. P.; Heckendorn, P.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 22
  • DOI: 10.5194/acp-13-11221-2013

Significant radiative impact of volcanic aerosol in the lowermost stratosphere
journal, July 2015

  • Andersson, Sandra M.; Martinsson, Bengt G.; Vernier, Jean-Paul
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8692

Surface response to stratospheric aerosol changes in a coupled atmosphere-ocean model: SURFACE RESPONSE TO AEROSOL CHANGE
journal, February 2013

  • Fyfe, J. C.; von Salzen, K.; Cole, J. N. S.
  • Geophysical Research Letters, Vol. 40, Issue 3
  • DOI: 10.1002/grl.50156

Clarifying the Relative Role of Forcing Uncertainties and Initial‐Condition Unknowns in Spreading the Climate Response to Volcanic Eruptions
journal, February 2019

  • Zanchettin, Davide; Timmreck, Claudia; Toohey, Matthew
  • Geophysical Research Letters, Vol. 46, Issue 3
  • DOI: 10.1029/2018gl081018

The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution
journal, July 2019

  • Golaz, Jean‐Christophe; Caldwell, Peter M.; Van Roekel, Luke P.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 7
  • DOI: 10.1029/2018ms001603

Radiative forcing from the 1991 Mount Pinatubo volcanic eruption
journal, June 1998

  • Stenchikov, Georgiy L.; Kirchner, Ingo; Robock, Alan
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D12
  • DOI: 10.1029/98jd00693

The Volcanic Signal in Surface Temperature Observations
journal, May 1995


Volcanoes and ENSO over the Past Millennium
journal, July 2008

  • Emile-Geay, Julien; Seager, Richard; Cane, Mark A.
  • Journal of Climate, Vol. 21, Issue 13
  • DOI: 10.1175/2007jcli1884.1

Volcanic Radiative Forcing From 1979 to 2015
text, January 2018

  • Schmidt, Anja; Mills, Mj; Ghan, S.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.34008

Aerosol microphysics simulations of the Mt.~Pinatubo eruption with the UM-UKCA composition-climate model
journal, January 2014

  • Dhomse, S. S.; Emmerson, K. M.; Mann, G. W.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 20
  • DOI: 10.5194/acp-14-11221-2014

Works referencing / citing this record:

The Global Space-based Stratospheric Aerosol Climatology (version 2.0): 1979–2018
journal, January 2020

  • Kovilakam, Mahesh; Thomason, Larry W.; Ernest, Nicholas
  • Earth System Science Data, Vol. 12, Issue 4
  • DOI: 10.5194/essd-12-2607-2020