DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Global gyrokinetic particle simulations of microturbulence in W7-X and LHD stellarators

Abstract

Global gyrokinetic particle simulations of electrostatic ion temperature gradient (ITG) instability show that the most unstable eigenmode is localized to some magnetic fieldlines or discrete locations on the poloidal plane in the Wendelstein 7-X (W7-X) stellarator due to its mirror-like magnetic fields, which vary strongly in the toroidal direction and induce coupling of more toroidal harmonics (n) to form the linear eigenmode than in the Large Helical Device (LHD) stellarator. Nonlinear electrostatic simulation results show that self-generated zonal flows are the dominant saturation mechanism for the ITG instabilities in both the LHD and W7-X. Additionally, radial widths of the fluctuation intensity in both the LHD and W7-X are significantly broadened from the linear phase to the nonlinear phase due to turbulence spreading. Finally, nonlinear spectra in the W7-X are dominated by low-n harmonics, which can be generated both by nonlinear toroidal coupling of high-n harmonics and by linear toroidal coupling with large amplitude zonal flows due to the 3D equilibrium magnetic fields.

Authors:
 [1];  [2]; ORCiD logo [3];  [4];  [5];  [3]; ORCiD logo [3]; ORCiD logo [6]; ORCiD logo [7]
  1. Peking Univ., Beijing (China); Univ. of California, Irvine, CA (United States)
  2. Univ. of California, Irvine, CA (United States); Max Planck Computing and Data Facility, Garching (Germany)
  3. Univ. of California, Irvine, CA (United States)
  4. Univ. of California, Irvine, CA (United States); Chinese Academy of Sciences (CAS), Beijing (China)
  5. Peking Univ., Beijing (China)
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  7. Zhejiang Univ., Hangzhou (China)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
China National Magnetic Confinement Fusion Science Program; USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR). Scientific Discovery through Advanced Computing (SciDAC); USDOE Office of Science (SC), Fusion Energy Sciences (FES); China Scholarship Council (CSC)
OSTI Identifier:
1657905
Grant/Contract Number:  
AC05-00OR22725; 2018YFE0304100; SC0018270; 201806010067; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 27; Journal Issue: 8; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Electrostatics; Gyrokinetic simulations; Stellarators; Wave mechanics; Plasma confinement; Turbulence simulations; Plasma instabilities; Transport properties

Citation Formats

Wang, H Y., Holod, I., Lin, Zhihong, Bao, Jian, Fu, Jing Yuan, Liu, Pengfei, Nicolau, Javier H., Spong, Donald, and Xiao, Yong. Global gyrokinetic particle simulations of microturbulence in W7-X and LHD stellarators. United States: N. p., 2020. Web. doi:10.1063/5.0014198.
Wang, H Y., Holod, I., Lin, Zhihong, Bao, Jian, Fu, Jing Yuan, Liu, Pengfei, Nicolau, Javier H., Spong, Donald, & Xiao, Yong. Global gyrokinetic particle simulations of microturbulence in W7-X and LHD stellarators. United States. https://doi.org/10.1063/5.0014198
Wang, H Y., Holod, I., Lin, Zhihong, Bao, Jian, Fu, Jing Yuan, Liu, Pengfei, Nicolau, Javier H., Spong, Donald, and Xiao, Yong. Thu . "Global gyrokinetic particle simulations of microturbulence in W7-X and LHD stellarators". United States. https://doi.org/10.1063/5.0014198. https://www.osti.gov/servlets/purl/1657905.
@article{osti_1657905,
title = {Global gyrokinetic particle simulations of microturbulence in W7-X and LHD stellarators},
author = {Wang, H Y. and Holod, I. and Lin, Zhihong and Bao, Jian and Fu, Jing Yuan and Liu, Pengfei and Nicolau, Javier H. and Spong, Donald and Xiao, Yong},
abstractNote = {Global gyrokinetic particle simulations of electrostatic ion temperature gradient (ITG) instability show that the most unstable eigenmode is localized to some magnetic fieldlines or discrete locations on the poloidal plane in the Wendelstein 7-X (W7-X) stellarator due to its mirror-like magnetic fields, which vary strongly in the toroidal direction and induce coupling of more toroidal harmonics (n) to form the linear eigenmode than in the Large Helical Device (LHD) stellarator. Nonlinear electrostatic simulation results show that self-generated zonal flows are the dominant saturation mechanism for the ITG instabilities in both the LHD and W7-X. Additionally, radial widths of the fluctuation intensity in both the LHD and W7-X are significantly broadened from the linear phase to the nonlinear phase due to turbulence spreading. Finally, nonlinear spectra in the W7-X are dominated by low-n harmonics, which can be generated both by nonlinear toroidal coupling of high-n harmonics and by linear toroidal coupling with large amplitude zonal flows due to the 3D equilibrium magnetic fields.},
doi = {10.1063/5.0014198},
journal = {Physics of Plasmas},
number = 8,
volume = 27,
place = {United States},
year = {Thu Aug 13 00:00:00 EDT 2020},
month = {Thu Aug 13 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Periodic quadratic spline interpolation
journal, September 1983


Isotope Effects on Trapped-Electron-Mode Driven Turbulence and Zonal Flows in Helical and Tokamak Plasmas
journal, April 2017


Stellarator Turbulence: Subdominant Eigenmodes and Quasilinear Modeling
journal, February 2016


Global linear gyrokinetic simulation of energetic particle-driven instabilities in the LHD stellarator
journal, June 2017


Nonlinear electromagnetic formulation for particle-in-cell simulation of lower hybrid waves in toroidal geometry
journal, June 2016

  • Bao, J.; Lin, Z.; Kuley, A.
  • Physics of Plasmas, Vol. 23, Issue 6
  • DOI: 10.1063/1.4952773

Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section
journal, January 1984

  • White, R. B.; Chance, M. S.
  • Physics of Fluids, Vol. 27, Issue 10
  • DOI: 10.1063/1.864527

Gyrokinetic calculations of the neoclassical radial electric field in stellarator plasmas
journal, June 2001

  • Lewandowski, J. L. V.; Williams, J.; Boozer, A. H.
  • Physics of Plasmas, Vol. 8, Issue 6
  • DOI: 10.1063/1.1370363

Physics issues in the design of high-beta, low-aspect-ratio stellarator experiments
journal, May 2000

  • Neilson, G. H.; Reiman, A. H.; Zarnstorff, M. C.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874015

Role of nonlinear toroidal coupling in electron temperature gradient turbulence
journal, May 2005

  • Lin, Z.; Chen, L.; Zonca, F.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1894766

Reducing turbulent transport in toroidal configurations via shaping
journal, May 2011

  • Mynick, H. E.; Pomphrey, N.; Xanthopoulos, P.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3560591

Three-dimensional toroidal equilibria and stability by a variational spectral method
journal, January 1985

  • Lao, L. L.; Greene, J. M.; Wang, T. S.
  • Physics of Fluids, Vol. 28, Issue 3
  • DOI: 10.1063/1.865056

A fully nonlinear characteristic method for gyrokinetic simulation
journal, January 1993

  • Parker, S. E.; Lee, W. W.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 1
  • DOI: 10.1063/1.860870

Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria
journal, January 1983


Overview of the Wendelstein 7-X phase contrast imaging diagnostic
journal, October 2018

  • Edlund, E. M.; Porkolab, M.; Huang, Z.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5038804

Gyrokinetic particle simulation of microturbulence for general magnetic geometry and experimental profiles
journal, February 2015

  • Xiao, Yong; Holod, Ihor; Wang, Zhixuan
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4908275

Toroidally localized and nonlocalized ballooning instabilities in a stellarator
journal, August 1998

  • Cuthbert, P.; Lewandowski, J. L. V.; Gardner, H. J.
  • Physics of Plasmas, Vol. 5, Issue 8
  • DOI: 10.1063/1.873014

Magnetic configuration effects on the Wendelstein 7-X stellarator
journal, May 2018


Effects of radial electric fields on linear ITG instabilities in W7-X and LHD
journal, May 2016


Size Scaling of Turbulent Transport in Magnetically Confined Plasmas
journal, April 2002


Microturbulence in DIII-D tokamak pedestal. II. Electromagnetic instabilities
journal, August 2015


A new class of quasi-omnigenous configurations
journal, September 2003


Zonal flows in stellarators in an ambient radial electric field
journal, July 2012

  • Mishchenko, Alexey; Kleiber, Ralf
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4737580

3D toroidal physics: Testing the boundaries of symmetry breakinga)
journal, May 2015


Comparative Study of Magnetic Field Configurations of LHD and CHS based on the Boundary Shape Analysis
journal, January 2011


Core radial electric field and transport in Wendelstein 7-X plasmas
journal, February 2018

  • Pablant, N. A.; Langenberg, A.; Alonso, A.
  • Physics of Plasmas, Vol. 25, Issue 2
  • DOI: 10.1063/1.4999842

Zonal Flow Dynamics and Control of Turbulent Transport in Stellarators
journal, December 2011


Neoclassical transport optimization of LHD
journal, September 2002


Recent advances in the design of quasiaxisymmetric stellarator plasma configurations
journal, May 2001

  • Reiman, A.; Ku, L.; Monticello, D.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1351826

Gyrokinetic particle simulation of neoclassical transport
journal, August 1995

  • Lin, Z.; Tang, W. M.; Lee, W. W.
  • Physics of Plasmas, Vol. 2, Issue 8
  • DOI: 10.1063/1.871196

Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry
journal, December 2009

  • Holod, I.; Zhang, W. L.; Xiao, Y.
  • Physics of Plasmas, Vol. 16, Issue 12
  • DOI: 10.1063/1.3273070

Non-axisymmetric magnetic fields and toroidal plasma confinement
journal, January 2015


The Stellarator Concept
journal, January 1958


Effects of magnetic islands on bootstrap current in toroidal plasmas
journal, December 2016


Current Status of Large Helical Device and Its Prospect for Deuterium Experiment
journal, July 2017


Plasma equilibrium with rational magnetic surfaces
journal, January 1981


Foundations of nonlinear gyrokinetic theory
journal, April 2007


Plasma equilibria with multiple ion species: Equations and algorithm
journal, August 2011

  • Galeotti, L.; Barnes, D. C.; Ceccherini, F.
  • Physics of Plasmas, Vol. 18, Issue 8
  • DOI: 10.1063/1.3625275

Verification of the global gyrokinetic stellarator code XGC-S for linear ion temperature gradient driven modes
journal, August 2019

  • Cole, M. D. J.; Hager, R.; Moritaka, T.
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5109259

Effects of magnetic islands on drift wave instability
journal, December 2014

  • Jiang, P.; Lin, Z.; Holod, I.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4903910

Gyrokinetic particle simulation model
journal, September 1987


Turbulent Transport Reduction by Zonal Flows: Massively Parallel Simulations
journal, September 1998


Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states
journal, November 2009


Effect of resonant magnetic perturbations on microturbulence in DIII-D pedestal
journal, October 2016


Physics design of a high-bbeta quasi-axisymmetric stellarator
journal, December 1999


Reduction of Turbulent Transport with Zonal Flows Enhanced in Helical Systems
journal, May 2008


Ideal MHD
book, July 2014


Neoclassical transport benchmark of global full-f gyrokinetic simulation in stellarator configurations
journal, February 2018

  • Matsuoka, Seikichi; Idomura, Yasuhiro; Satake, Shinsuke
  • Physics of Plasmas, Vol. 25, Issue 2
  • DOI: 10.1063/1.5010071