DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanocellulose Dewatering and Drying: Current State and Future Perspectives

Abstract

The knowledge base for nanocellulose (NC) has grown exponentially over the past two decades and continues to expand with the increasing number of potential applications demonstrated in the literature and the patent space. NC has multiple forms depending on the starting cellulose source and the specific process used to produce it. Its high degree of surface reactivity makes it an ideal support structure for a wide variety of functional groups, leading to the ability to engineer materials for very specific applications. However, removing water from an NC suspension, e.g., dewatering and drying, while retaining the nanoscale properties of the NC remains a significant challenge to successful commercialization of NC materials. Processes for dewatering and drying of NC are desirable because of the high transport costs of shipping dilute aqueous suspensions, as well as end-use application requirements. Therefore, the development of nondestructive, cost-effective, scalable, and environmentally friendly dewatering and drying processes is important for commercial deployment of NC applications. This review addresses the current state of published knowledge on NC dewatering and drying and identifies research gaps that could be further explored in a precompetitive context to accelerate commercialization.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3];  [4]; ORCiD logo [5]
  1. Georgia Inst. of Technology, Atlanta, GA (United States). Renewable Bioproducts Inst.
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States). Biosciences Center
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Univ. of Maine, Orono, ME (United States)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Bioenergy Technologies Office
OSTI Identifier:
1649340
Alternate Identifier(s):
OSTI ID: 1659860
Report Number(s):
NREL/JA-2700-76238
Journal ID: ISSN 2168-0485
Grant/Contract Number:  
AC05-00OR22725; AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
ACS Sustainable Chemistry & Engineering
Additional Journal Information:
Journal Volume: 8; Journal Issue: 26; Journal ID: ISSN 2168-0485
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Nanocellulose; dewatering; drying; cellulose nanofibrils; cellulose nanocrystals; 29 EE - Bioenergy Technologies Office (EE-3B); nanocellulose

Citation Formats

Sinquefield, Scott, Ciesielski, Peter N., Li, Kai, Gardner, Douglas J., and Ozcan, Soydan. Nanocellulose Dewatering and Drying: Current State and Future Perspectives. United States: N. p., 2020. Web. doi:10.1021/acssuschemeng.0c01797.
Sinquefield, Scott, Ciesielski, Peter N., Li, Kai, Gardner, Douglas J., & Ozcan, Soydan. Nanocellulose Dewatering and Drying: Current State and Future Perspectives. United States. https://doi.org/10.1021/acssuschemeng.0c01797
Sinquefield, Scott, Ciesielski, Peter N., Li, Kai, Gardner, Douglas J., and Ozcan, Soydan. Mon . "Nanocellulose Dewatering and Drying: Current State and Future Perspectives". United States. https://doi.org/10.1021/acssuschemeng.0c01797. https://www.osti.gov/servlets/purl/1649340.
@article{osti_1649340,
title = {Nanocellulose Dewatering and Drying: Current State and Future Perspectives},
author = {Sinquefield, Scott and Ciesielski, Peter N. and Li, Kai and Gardner, Douglas J. and Ozcan, Soydan},
abstractNote = {The knowledge base for nanocellulose (NC) has grown exponentially over the past two decades and continues to expand with the increasing number of potential applications demonstrated in the literature and the patent space. NC has multiple forms depending on the starting cellulose source and the specific process used to produce it. Its high degree of surface reactivity makes it an ideal support structure for a wide variety of functional groups, leading to the ability to engineer materials for very specific applications. However, removing water from an NC suspension, e.g., dewatering and drying, while retaining the nanoscale properties of the NC remains a significant challenge to successful commercialization of NC materials. Processes for dewatering and drying of NC are desirable because of the high transport costs of shipping dilute aqueous suspensions, as well as end-use application requirements. Therefore, the development of nondestructive, cost-effective, scalable, and environmentally friendly dewatering and drying processes is important for commercial deployment of NC applications. This review addresses the current state of published knowledge on NC dewatering and drying and identifies research gaps that could be further explored in a precompetitive context to accelerate commercialization.},
doi = {10.1021/acssuschemeng.0c01797},
journal = {ACS Sustainable Chemistry & Engineering},
number = 26,
volume = 8,
place = {United States},
year = {Mon Jun 08 00:00:00 EDT 2020},
month = {Mon Jun 08 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 50 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

In Vivo Evaluation of the Pulmonary Toxicity of Cellulose Nanocrystals: A Renewable and Sustainable Nanomaterial of the Future
journal, May 2014

  • Yanamala, Naveena; Farcas, Mariana T.; Hatfield, Meghan K.
  • ACS Sustainable Chemistry & Engineering, Vol. 2, Issue 7
  • DOI: 10.1021/sc500153k

Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review
journal, February 2018

  • Rajinipriya, Malladi; Nagalakshmaiah, Malladi; Robert, Mathieu
  • ACS Sustainable Chemistry & Engineering, Vol. 6, Issue 3
  • DOI: 10.1021/acssuschemeng.7b03437

Review of nanocellulose for sustainable future materials
journal, April 2015

  • Kim, Joo-Hyung; Shim, Bong Sup; Kim, Heung Soo
  • International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 2, Issue 2
  • DOI: 10.1007/s40684-015-0024-9

Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes
journal, January 2018

  • Mohammed, Nishil; Grishkewich, Nathan; Tam, Kam Chiu
  • Environmental Science: Nano, Vol. 5, Issue 3
  • DOI: 10.1039/C7EN01029J

A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications
journal, October 2016

  • Abdul Khalil, H. P. S.; Davoudpour, Y.; Saurabh, Chaturbhuj K.
  • Renewable and Sustainable Energy Reviews, Vol. 64
  • DOI: 10.1016/j.rser.2016.06.072

Review of Hydrogels and Aerogels Containing Nanocellulose
journal, April 2017


Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges
journal, April 2014

  • Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 52, Issue 12
  • DOI: 10.1002/polb.23490

Current characterization methods for cellulose nanomaterials
journal, January 2018

  • Foster, E. Johan; Moon, Robert J.; Agarwal, Umesh P.
  • Chemical Society Reviews, Vol. 47, Issue 8
  • DOI: 10.1039/C6CS00895J

Preparation, properties and applications of nanocellulosic materials
journal, May 2017


Overview of Cellulose Nanomaterials, Their Capabilities and Applications
journal, July 2016


Production of cellulose nanofibrils: A review of recent advances
journal, December 2016


Review of Nanocellulose Polymer Composite Characteristics and Challenges
journal, December 2016


A review of cellulose nanocrystals and nanocomposites
journal, May 2011

  • Ramires, Elaine C.; Dufresne, Alain
  • TAPPI Journal, Vol. 10, Issue 4
  • DOI: 10.32964/TJ10.4.9

A cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes
journal, January 2015

  • Lu, Yuan; Armentrout, Aaron A.; Li, Juchuan
  • Journal of Materials Chemistry A, Vol. 3, Issue 25
  • DOI: 10.1039/C5TA02304A

Green nanomaterials: On track for a sustainable future
journal, August 2015


Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications
journal, November 2018


High modulus biocomposites via additive manufacturing: Cellulose nanofibril networks as “microsponges”
journal, September 2019


Advanced Materials through Assembly of Nanocelluloses
journal, March 2018

  • Kontturi, Eero; Laaksonen, Päivi; Linder, Markus B.
  • Advanced Materials, Vol. 30, Issue 24
  • DOI: 10.1002/adma.201703779

Nanocellulose, a tiny fiber with huge applications
journal, June 2016


Market projections of cellulose nanomaterial-enabled products ? Part 1: Applications
journal, June 2014

  • Shatkin, Jo Anne; H. Wegner, Theodore; Bilek, E. M. (Ted)
  • TAPPI Journal, Vol. 13, Issue 5
  • DOI: 10.32964/TJ13.5.9

Market projections of cellulose nanomaterial-enabled products - Part 2: Volume estimates
journal, July 2014

  • Cowie, John; Bilek, E. M. (Ted); H. Wegner, Theodore
  • TAPPI Journal, Vol. 13, Issue 6
  • DOI: 10.32964/TJ13.6.57

Studies on Bound Water of Cellulose by Differential Scanning Calorimetry
journal, September 1981

  • Nakamura, Kunio; Hatakeyama, Tatsuko; Hatakeyama, Hyoe
  • Textile Research Journal, Vol. 51, Issue 9
  • DOI: 10.1177/004051758105100909

Quantification of water in different states of interaction with wood pulp fibres
journal, December 1996

  • Weise, U.; Maloney, T.; Paulapuro, H.
  • Cellulose, Vol. 3, Issue 1
  • DOI: 10.1007/BF02228801

Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction
journal, August 2002

  • Nishiyama, Yoshiharu; Langan, Paul; Chanzy, Henri
  • Journal of the American Chemical Society, Vol. 124, Issue 31
  • DOI: 10.1021/ja0257319

Crystal Structure and Hydrogen Bonding System in Cellulose I α from Synchrotron X-ray and Neutron Fiber Diffraction
journal, November 2003

  • Nishiyama, Yoshiharu; Sugiyama, Junji; Chanzy, Henri
  • Journal of the American Chemical Society, Vol. 125, Issue 47
  • DOI: 10.1021/ja037055w

Hydrophilicity and Lipophilicity of Cellulose Crystal Surfaces
journal, October 2001


Diffraction from nonperiodic models of cellulose crystals
journal, January 2012


Water Structuring over the Hydrophobic Surface of Cellulose
journal, November 2014

  • Miyamoto, Hitomi; Schnupf, Udo; Brady, John W.
  • Journal of Agricultural and Food Chemistry, Vol. 62, Issue 46
  • DOI: 10.1021/jf501763r

Nanocellulose–surfactant interactions
journal, May 2017

  • Tardy, Blaise L.; Yokota, Shingo; Ago, Mariko
  • Current Opinion in Colloid & Interface Science, Vol. 29
  • DOI: 10.1016/j.cocis.2017.02.004

Key advances in the chemical modification of nanocelluloses
journal, January 2014


Nanofibrillated Cellulose Surface Modification: A Review
journal, May 2013

  • Missoum, Karim; Belgacem, Mohamed; Bras, Julien
  • Materials, Vol. 6, Issue 5
  • DOI: 10.3390/ma6051745

Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications
journal, April 2013


Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions
journal, March 2005

  • Beck-Candanedo, Stephanie; Roman, Maren; Gray, Derek G.
  • Biomacromolecules, Vol. 6, Issue 2
  • DOI: 10.1021/bm049300p

Single-Step Method for the Isolation and Surface Functionalization of Cellulosic Nanowhiskers
journal, February 2009

  • Braun, Birgit; Dorgan, John R.
  • Biomacromolecules, Vol. 10, Issue 2
  • DOI: 10.1021/bm8011117

Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications
journal, June 2010

  • Habibi, Youssef; Lucia, Lucian A.; Rojas, Orlando J.
  • Chemical Reviews, Vol. 110, Issue 6
  • DOI: 10.1021/cr900339w

Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels
journal, February 2017


Electrokinetic properties of processed cellulose fibers
journal, September 1998

  • Stana-Kleinschek, K.; Ribitsch, V.
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 140, Issue 1-3
  • DOI: 10.1016/S0927-7757(97)00301-4

Wettability of cotton fabric by aqueous solutions of surfactants with different structures
journal, January 2007

  • Simončič, Barbara; Rozman, Veronika
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 292, Issue 2-3
  • DOI: 10.1016/j.colsurfa.2006.06.025

Interaction of the Anionic Surfactant SDS with a Cellulose Thin Film and the Role of Electrolyte and Poyelectrolyte. 2 Hydrophilic Cellulose
journal, June 2012

  • Tucker, Ian M.; Petkov, Jordan T.; Penfold, Jeffrey
  • Langmuir, Vol. 28, Issue 27
  • DOI: 10.1021/la3019277

TEMPO-oxidized cellulose nanofibers
journal, January 2011

  • Isogai, Akira; Saito, Tsuguyuki; Fukuzumi, Hayaka
  • Nanoscale, Vol. 3, Issue 1
  • DOI: 10.1039/C0NR00583E

Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants
journal, December 2010


Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts
journal, January 2012

  • Salajková, Michaela; Berglund, Lars A.; Zhou, Qi
  • Journal of Materials Chemistry, Vol. 22, Issue 37
  • DOI: 10.1039/c2jm34355j

Dewatering Behavior of a Wood-Cellulose Nanofibril Particulate System
journal, October 2019


Sonication-assisted surface modification method to expedite the water removal from cellulose nanofibers for use in nanopapers and paper making
journal, October 2018


The Influence of Ionic Strength on the Electroassisted Filtration of Microcrystalline Cellulose
journal, October 2017

  • Wetterling, Jonas; Jonsson, Sandra; Mattsson, Tuve
  • Industrial & Engineering Chemistry Research, Vol. 56, Issue 44
  • DOI: 10.1021/acs.iecr.7b03575

Electroosmotic dewatering of cellulose nanocrystals
journal, March 2018


The influence of shear on the dewatering of high consistency nanofibrillated cellulose furnishes
journal, June 2013


Micro nanofibrillated cellulose (MNFC) gel dewatering induced at ultralow-shear in presence of added colloidally-unstable particles
journal, January 2017


The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes
journal, October 2013


Consolidation and dewatering of a microfibrillated cellulose fiber composite paper in wet pressing
journal, July 2015


Dewatering of Biomaterials by Mechanical Thermal Expression
journal, August 2006


WtF-Nano: One-Pot Dewatering and Water-Free Topochemical Modification of Nanocellulose in Ionic Liquids or γ-Valerolactone
journal, November 2017

  • Laaksonen, Tiina; Helminen, Jussi K. J.; Lemetti, Laura
  • ChemSusChem, Vol. 10, Issue 24
  • DOI: 10.1002/cssc.201701344

Ionic liquids for sustainable processes: Liquid metal catalysis
journal, June 2018

  • Li, Kai; Choudhary, Hemant; Rogers, Robin D.
  • Current Opinion in Green and Sustainable Chemistry, Vol. 11
  • DOI: 10.1016/j.cogsc.2018.02.011

Charge reversal system with cationized cellulose nanocrystals to promote dewatering of a cellulosic fiber suspension
journal, September 2017


Drying techniques applied to cellulose nanofibers
journal, February 2016

  • Zimmermann, Matheus VG; Borsoi, Cleide; Lavoratti, Alessandra
  • Journal of Reinforced Plastics and Composites, Vol. 35, Issue 8
  • DOI: 10.1177/0731684415626286

Drying cellulose nanofibrils: in search of a suitable method
journal, December 2011


Production and modification of nanofibrillated cellulose using various mechanical processes: A review
journal, January 2014


Strong and Tough Cellulose Nanofibrils Composite Films: Mechanism of Synergetic Effect of Hydrogen Bonds and Ionic Interactions
journal, August 2019


Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films
journal, January 2014


Purification and drying of bromelain
journal, January 2009


Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity
journal, August 2013


Building dry powder formulations using supercritical CO 2 spray drying
journal, June 2017


In-situ modification of cellulose nanofibrils by organosilanes during spray drying
journal, December 2016


Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposites with enhanced impact strength
journal, September 2014

  • Peng, Yucheng; Gallegos, Sergio A.; Gardner, Douglas J.
  • Polymer Composites, Vol. 37, Issue 3
  • DOI: 10.1002/pc.23235

Aerogels from nanofibrillated cellulose with tunable oleophobicity
journal, January 2010

  • Aulin, Christian; Netrval, Julia; Wågberg, Lars
  • Soft Matter, Vol. 6, Issue 14
  • DOI: 10.1039/c001939a

Nanocellulose-based foams and aerogels: processing, properties, and applications
journal, January 2017

  • Lavoine, Nathalie; Bergström, Lennart
  • Journal of Materials Chemistry A, Vol. 5, Issue 31
  • DOI: 10.1039/C7TA02807E

Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities
journal, March 2010


The effect of drying technique of nanocellulose dispersions on properties of dried materials
journal, February 2012


Spray-freeze-drying: A novel process for the drying of foods and bioproducts
journal, February 2015

  • Ishwarya, S. Padma; Anandharamakrishnan, C.; Stapley, Andrew G. F.
  • Trends in Food Science & Technology, Vol. 41, Issue 2
  • DOI: 10.1016/j.tifs.2014.10.008

Spray freezing into liquid versus spray-freeze drying: Influence of atomization on protein aggregation and biological activity
journal, January 2006

  • Yu, Zhongshui; Johnston, Keith P.; Williams, Robert O.
  • European Journal of Pharmaceutical Sciences, Vol. 27, Issue 1, p. 9-18
  • DOI: 10.1016/j.ejps.2005.08.010

Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology
journal, November 2016


Butanol-mediated oven-drying of nanocellulose with enhanced dehydration rate and aqueous re-dispersion
journal, October 2017

  • Hanif, Zahid; Jeon, Hyeonyeol; Tran, Thang Hong
  • Journal of Polymer Research, Vol. 25, Issue 3
  • DOI: 10.1007/s10965-017-1343-z

Assembling and Redispersibility of Rice Straw Nanocellulose: Effect of tert -Butanol
journal, October 2014

  • Jiang, Feng; Hsieh, You-Lo
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 22
  • DOI: 10.1021/am505626a

Water Redispersible Dried Nanofibrillated Cellulose by Adding Sodium Chloride
journal, November 2012

  • Missoum, Karim; Bras, Julien; Belgacem, Mohamed Naceur
  • Biomacromolecules, Vol. 13, Issue 12
  • DOI: 10.1021/bm301378n

Poly (vinyl alcohol) as a capping agent in oven dried cellulose nanofibrils
journal, January 2018


Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose
journal, September 2014


Dispersibility in Water of Dried Nanocrystalline Cellulose
journal, April 2012

  • Beck, Stephanie; Bouchard, Jean; Berry, Richard
  • Biomacromolecules, Vol. 13, Issue 5
  • DOI: 10.1021/bm300191k

Nanoscale Assembly of Cellulose Nanocrystals during Drying and Redispersion
journal, January 2018


Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form
journal, November 2009


Drying of a cellulose II gel: effect of physical modification and redispersibility in water
journal, January 2017