DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Three-Dimensional Phthalocyanine Metal-Catecholates for High Electrochemical Carbon Dioxide Reduction

Abstract

The synthesis of a new anionic 3D metal-catecholate framework, termed MOF-1992, is achieved by linking tetratopic cobalt phthalocyanin-2,3,9,10,16,17,23,24-octaol linkers with Fe3(-C2O2-)6(OH2)2 trimers into an extended framework of roc topology. MOF-1992 exhibits sterically accessible Co active sites together with charge transfer properties. Cathodes based on MOF-1992 and carbon black (CB) display a high coverage of electroactive sites (270 nmol cm-2) and a high current density (-16.5 mA cm-2; overpotential, -0.52 V) for the CO2 to CO reduction reaction in water (faradaic efficiency, 80%). Finally, over the 6 h experiment, MOF-1992/CB cathodes reach turnover numbers of 5800 with turnover frequencies of 0.20 s-1 per active site.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [4]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoScience Institute, Berkeley, CA (United States)
  2. Consejo Superior de Investigaciones Científicas, Madrid (Spain)
  3. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoScience Institute, Berkeley, CA (United States); Sungkyunkwan Univ. (SKKU), Suwon (Korea)
  4. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoScience Institute, Berkeley, CA (United States); King Abdulaziz City for Science and Technology, Riyadh (Saudi Arabia)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); King Abdulaziz City for Science and Technology; Fundacion Ruamon Areces; Swiss National Science Foundation (SNSF)
OSTI Identifier:
1634054
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 141; Journal Issue: 43; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; crystal structure; electrical properties; electrodes; metal organic frameworks; catalysts

Citation Formats

Matheu, Roc, Gutierrez-Puebla, Enrique, Monge, M. Ángeles, Diercks, Christian S., Kang, Joohoon, Prévot, Mathieu S., Pei, Xiaokun, Hanikel, Nikita, Zhang, Bing, Yang, Peidong, and Yaghi, Omar M. Three-Dimensional Phthalocyanine Metal-Catecholates for High Electrochemical Carbon Dioxide Reduction. United States: N. p., 2019. Web. doi:10.1021/jacs.9b09298.
Matheu, Roc, Gutierrez-Puebla, Enrique, Monge, M. Ángeles, Diercks, Christian S., Kang, Joohoon, Prévot, Mathieu S., Pei, Xiaokun, Hanikel, Nikita, Zhang, Bing, Yang, Peidong, & Yaghi, Omar M. Three-Dimensional Phthalocyanine Metal-Catecholates for High Electrochemical Carbon Dioxide Reduction. United States. https://doi.org/10.1021/jacs.9b09298
Matheu, Roc, Gutierrez-Puebla, Enrique, Monge, M. Ángeles, Diercks, Christian S., Kang, Joohoon, Prévot, Mathieu S., Pei, Xiaokun, Hanikel, Nikita, Zhang, Bing, Yang, Peidong, and Yaghi, Omar M. Tue . "Three-Dimensional Phthalocyanine Metal-Catecholates for High Electrochemical Carbon Dioxide Reduction". United States. https://doi.org/10.1021/jacs.9b09298. https://www.osti.gov/servlets/purl/1634054.
@article{osti_1634054,
title = {Three-Dimensional Phthalocyanine Metal-Catecholates for High Electrochemical Carbon Dioxide Reduction},
author = {Matheu, Roc and Gutierrez-Puebla, Enrique and Monge, M. Ángeles and Diercks, Christian S. and Kang, Joohoon and Prévot, Mathieu S. and Pei, Xiaokun and Hanikel, Nikita and Zhang, Bing and Yang, Peidong and Yaghi, Omar M.},
abstractNote = {The synthesis of a new anionic 3D metal-catecholate framework, termed MOF-1992, is achieved by linking tetratopic cobalt phthalocyanin-2,3,9,10,16,17,23,24-octaol linkers with Fe3(-C2O2-)6(OH2)2 trimers into an extended framework of roc topology. MOF-1992 exhibits sterically accessible Co active sites together with charge transfer properties. Cathodes based on MOF-1992 and carbon black (CB) display a high coverage of electroactive sites (270 nmol cm-2) and a high current density (-16.5 mA cm-2; overpotential, -0.52 V) for the CO2 to CO reduction reaction in water (faradaic efficiency, 80%). Finally, over the 6 h experiment, MOF-1992/CB cathodes reach turnover numbers of 5800 with turnover frequencies of 0.20 s-1 per active site.},
doi = {10.1021/jacs.9b09298},
journal = {Journal of the American Chemical Society},
number = 43,
volume = 141,
place = {United States},
year = {Tue Oct 15 00:00:00 EDT 2019},
month = {Tue Oct 15 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 136 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Single crystal X-ray structure of MOF-1992 based on Fe trimers and Co phthalocyanine catechol linkers (CoPc). Atom color scheme: C, black; O, red; N, green; Co, orange; Fe, blue polyhedra. Hydrogen atoms and chlorido ligands (Section S3) are omitted. The anionic charge of [Fe6(OH2)4(CoPc)3]6-, MOF-1992, is balanced bymore » the presence of [X]n counterions (X = Mg2+ or Fe3+).« less

Save / Share:

Works referenced in this record:

The frontiers of energy
journal, January 2016

  • Armstrong, Robert C.; Wolfram, Catherine; de Jong, Krijn P.
  • Nature Energy, Vol. 1, Issue 1
  • DOI: 10.1038/nenergy.2015.20

Materials for solar fuels and chemicals
journal, December 2016

  • Montoya, Joseph H.; Seitz, Linsey C.; Chakthranont, Pongkarn
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4778

What would it take for renewably powered electrosynthesis to displace petrochemical processes?
journal, April 2019


Electrochemical CO 2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution
journal, June 2016

  • Weng, Zhe; Jiang, Jianbing; Wu, Yueshen
  • Journal of the American Chemical Society, Vol. 138, Issue 26
  • DOI: 10.1021/jacs.6b04746

A Local Proton Source Enhances CO 2 Electroreduction to CO by a Molecular Fe Catalyst
journal, October 2012


Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process
journal, November 1986

  • Beley, Marc.; Collin, Jean Paul.; Ruppert, Romain.
  • Journal of the American Chemical Society, Vol. 108, Issue 24
  • DOI: 10.1021/ja00284a003

The Homogeneous Reduction of CO 2 by [Ni(cyclam)] + : Increased Catalytic Rates with the Addition of a CO Scavenger
journal, March 2015

  • Froehlich, Jesse D.; Kubiak, Clifford P.
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/ja512575v

Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures
journal, March 2017

  • Zhang, Xing; Wu, Zishan; Zhang, Xiao
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14675

CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine
journal, August 2019


Efficient electrolyzer for CO 2 splitting in neutral water using earth-abundant materials
journal, May 2016

  • Tatin, Arnaud; Comminges, Clément; Kokoh, Boniface
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 20
  • DOI: 10.1073/pnas.1604628113

Molecular electrocatalysts can mediate fast, selective CO 2 reduction in a flow cell
journal, July 2019


Introduction to Reticular Chemistry
journal, January 2019

  • Yaghi, Omar M.; Kalmutzki, Markus J.; Diercks, Christian S.
  • Wiley‐VCH Verlag GmbH & Co.
  • DOI: 10.1002/9783527821099

The role of reticular chemistry in the design of CO2 reduction catalysts
journal, February 2018


Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide
journal, October 2015

  • Kornienko, Nikolay; Zhao, Yingbo; Kley, Christopher S.
  • Journal of the American Chemical Society, Vol. 137, Issue 44
  • DOI: 10.1021/jacs.5b08212

Electrochemical Reduction of CO 2 to CO by a Heterogeneous Catalyst of Fe–Porphyrin-Based Metal–Organic Framework
journal, August 2018

  • Dong, Bao-Xia; Qian, She-Liang; Bu, Fan-Yan
  • ACS Applied Energy Materials, Vol. 1, Issue 9
  • DOI: 10.1021/acsaem.8b00797

Covalent organic frameworks comprising cobalt porphyrins for catalytic CO 2 reduction in water
journal, August 2015


Facile Solvent-Free Synthesis of Thin Iron Porphyrin COFs on Carbon Cloth Electrodes for CO 2 Reduction
journal, June 2018


Three-Dimensional Metal-Catecholate Frameworks and Their Ultrahigh Proton Conductivity
journal, December 2015

  • Nguyen, Nhung T. T.; Furukawa, Hiroyasu; Gándara, Felipe
  • Journal of the American Chemical Society, Vol. 137, Issue 49
  • DOI: 10.1021/jacs.5b10999

New Porous Crystals of Extended Metal-Catecholates
journal, August 2012

  • Hmadeh, Mohamad; Lu, Zheng; Liu, Zheng
  • Chemistry of Materials, Vol. 24, Issue 18, p. 3511-3513
  • DOI: 10.1021/cm301194a

2D Conductive Iron-Quinoid Magnets Ordering up to T c = 105 K via Heterogenous Redox Chemistry
journal, March 2017

  • DeGayner, Jordan A.; Jeon, Ie-Rang; Sun, Lei
  • Journal of the American Chemical Society, Vol. 139, Issue 11
  • DOI: 10.1021/jacs.7b00705

Electrically Conductive Porous Metal-Organic Frameworks
journal, January 2016

  • Sun, Lei; Campbell, Michael G.; Dincă, Mircea
  • Angewandte Chemie International Edition, Vol. 55, Issue 11
  • DOI: 10.1002/anie.201506219

Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide
journal, January 1974

  • Meshitsuka, Shunsuke; Ichikawa, Masaru; Tamaru, Kenzi
  • Journal of the Chemical Society, Chemical Communications, Issue 5
  • DOI: 10.1039/c39740000158

Polymer coordination promotes selective CO 2 reduction by cobalt phthalocyanine
journal, January 2016

  • Kramer, W. W.; McCrory, C. C. L.
  • Chemical Science, Vol. 7, Issue 4
  • DOI: 10.1039/C5SC04015A

A Phthalocyanine-Based Layered Two-Dimensional Conjugated Metal-Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction
journal, July 2019

  • Zhong, Haixia; Ly, Khoa Hoang; Wang, Mingchao
  • Angewandte Chemie International Edition, Vol. 58, Issue 31
  • DOI: 10.1002/anie.201907002

Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks
journal, June 2010

  • Spitler, Eric L.; Dichtel, William R.
  • Nature Chemistry, Vol. 2, Issue 8, p. 672-677
  • DOI: 10.1038/nchem.695

Synthesis and Electric Properties of a Two-Dimensional Metal-Organic Framework Based on Phthalocyanine
journal, January 2018

  • Nagatomi, Hisanori; Yanai, Nobuhiro; Yamada, Teppei
  • Chemistry - A European Journal, Vol. 24, Issue 8
  • DOI: 10.1002/chem.201705530

Welding Metallophthalocyanines into Bimetallic Molecular Meshes for Ultrasensitive, Low-Power Chemiresistive Detection of Gases
journal, December 2018

  • Meng, Zheng; Aykanat, Aylin; Mirica, Katherine A.
  • Journal of the American Chemical Society, Vol. 141, Issue 5
  • DOI: 10.1021/jacs.8b11257

Electrical and Optical Tunability in All-Inorganic Halide Perovskite Alloy Nanowires
journal, May 2018


Tunable Mixed-Valence Doping toward Record Electrical Conductivity in a Three-Dimensional Metal–Organic Framework
journal, May 2018

  • Xie, Lilia S.; Sun, Lei; Wan, Ruomeng
  • Journal of the American Chemical Society, Vol. 140, Issue 24
  • DOI: 10.1021/jacs.8b03604

Electron delocalization and charge mobility as a function of reduction in a metal–organic framework
journal, June 2018


Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction
journal, January 2018

  • Diercks, Christian S.; Lin, Song; Kornienko, Nikolay
  • Journal of the American Chemical Society, Vol. 140, Issue 3
  • DOI: 10.1021/jacs.7b11940

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.