DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Catechol-Ligated Transition Metals: A Quantum Chemical Study on a Promising System for Gas Separation

Abstract

We report that metal-organic frameworks (MOFs) have received a great deal of attention for their potential in atmospheric filtering, and recent work has shown that catecholate linkers can bind metals, creating MOFs with monocatecholate metal centers and abundant open coordination sites. In this study, M-catecholate systems (with M = Mg2+, Sc2+, Ti2+, V2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) were used as computational models of metalated catecholate linkers in MOFs. Nitric oxide (NO) is a radical molecule that is considered an environmental pollutant and is toxic if inhaled in large quantities. Binding NO is of interest in creating atmospheric filters, both at the industrial and personal scale. The binding energies of NO to the metal-catecholate systems were calculated using density functional theory (DFT) and complete active space self-consistent field (CASSCF) followed by second order perturbation (CASPT2). Selectivity was studied by calculating the binding energies of additional guests (CO, NH3, H2O, N2, and CO2). The toxic guests have stronger binding than the benign guests for all metals studied, and NO has significantly stronger binding than other guests for most of the metals studied, suggesting that metal-catecholates are worthy of further study for NO filtration. Finally, certain metal-catecholates also showedmore » potential for separation of N2 and CO2 via N2 activation, which could be relevant for carbon capture or ammonia synthesis.« less

Authors:
ORCiD logo [1];  [1];  [1];  [2];  [3]; ORCiD logo [4]; ORCiD logo [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center
  2. The Dow Chemical Company, Midland, MI (United States). Core Research and Development
  3. Univ. of Tennessee, Knoxville, TN (United States). Department of Chemistry
  4. Northwestern Univ., Evanston, IL (United States). Department of Chemical & Biological Engineering
Publication Date:
Research Org.:
Univ. of Minnesota, Minneapolis, MN (United States). Nanoporous Materials Genome Center
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
Contributing Org.:
Minnesota Supercomputing Institute (MSI) at the University of Minnesota
OSTI Identifier:
1477217
Grant/Contract Number:  
FG02-12ER16362; SC0008688
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 121; Journal Issue: 19; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Stoneburner, Samuel J., Livermore, Vanessa, McGreal, Meghan E., Yu, Decai, Vogiatzis, Konstantinos D., Snurr, Randall Q., and Gagliardi, Laura. Catechol-Ligated Transition Metals: A Quantum Chemical Study on a Promising System for Gas Separation. United States: N. p., 2017. Web. doi:10.1021/acs.jpcc.7b02685.
Stoneburner, Samuel J., Livermore, Vanessa, McGreal, Meghan E., Yu, Decai, Vogiatzis, Konstantinos D., Snurr, Randall Q., & Gagliardi, Laura. Catechol-Ligated Transition Metals: A Quantum Chemical Study on a Promising System for Gas Separation. United States. https://doi.org/10.1021/acs.jpcc.7b02685
Stoneburner, Samuel J., Livermore, Vanessa, McGreal, Meghan E., Yu, Decai, Vogiatzis, Konstantinos D., Snurr, Randall Q., and Gagliardi, Laura. Fri . "Catechol-Ligated Transition Metals: A Quantum Chemical Study on a Promising System for Gas Separation". United States. https://doi.org/10.1021/acs.jpcc.7b02685. https://www.osti.gov/servlets/purl/1477217.
@article{osti_1477217,
title = {Catechol-Ligated Transition Metals: A Quantum Chemical Study on a Promising System for Gas Separation},
author = {Stoneburner, Samuel J. and Livermore, Vanessa and McGreal, Meghan E. and Yu, Decai and Vogiatzis, Konstantinos D. and Snurr, Randall Q. and Gagliardi, Laura},
abstractNote = {We report that metal-organic frameworks (MOFs) have received a great deal of attention for their potential in atmospheric filtering, and recent work has shown that catecholate linkers can bind metals, creating MOFs with monocatecholate metal centers and abundant open coordination sites. In this study, M-catecholate systems (with M = Mg2+, Sc2+, Ti2+, V2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+) were used as computational models of metalated catecholate linkers in MOFs. Nitric oxide (NO) is a radical molecule that is considered an environmental pollutant and is toxic if inhaled in large quantities. Binding NO is of interest in creating atmospheric filters, both at the industrial and personal scale. The binding energies of NO to the metal-catecholate systems were calculated using density functional theory (DFT) and complete active space self-consistent field (CASSCF) followed by second order perturbation (CASPT2). Selectivity was studied by calculating the binding energies of additional guests (CO, NH3, H2O, N2, and CO2). The toxic guests have stronger binding than the benign guests for all metals studied, and NO has significantly stronger binding than other guests for most of the metals studied, suggesting that metal-catecholates are worthy of further study for NO filtration. Finally, certain metal-catecholates also showed potential for separation of N2 and CO2 via N2 activation, which could be relevant for carbon capture or ammonia synthesis.},
doi = {10.1021/acs.jpcc.7b02685},
journal = {Journal of Physical Chemistry. C},
number = 19,
volume = 121,
place = {United States},
year = {Fri Apr 07 00:00:00 EDT 2017},
month = {Fri Apr 07 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Toxicology of Inhaled Nitric Oxide
journal, January 2001


Metal–Organic Frameworks for Air Purification of Toxic Chemicals
journal, April 2014

  • DeCoste, Jared B.; Peterson, Gregory W.
  • Chemical Reviews, Vol. 114, Issue 11
  • DOI: 10.1021/cr4006473

History of chemical and biological warfare agents
journal, October 2005


Liquid Phase Oxidation and Absorption of NO from Flue Gas: A Review
journal, January 2015


Removal of Sulfur Dioxide and Nitric Oxide Using Cobalt Ethylenediamine Solution
journal, January 2005

  • Long, Xiang-li; Xiao, Wen-de; Yuan, Wei-kang
  • Industrial & Engineering Chemistry Research, Vol. 44, Issue 4
  • DOI: 10.1021/ie049513v

Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal–Organic Frameworks
journal, April 2013

  • McKinlay, A. C.; Eubank, J. F.; Wuttke, S.
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm304037x

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Reticular synthesis and the design of new materials
journal, June 2003

  • Yaghi, Omar M.; O'Keeffe, Michael; Ockwig, Nathan W.
  • Nature, Vol. 423, Issue 6941, p. 705-714
  • DOI: 10.1038/nature01650

Metal−Organic Frameworks with Functional Pores for Recognition of Small Molecules
journal, August 2010

  • Chen, Banglin; Xiang, Shengchang; Qian, Guodong
  • Accounts of Chemical Research, Vol. 43, Issue 8
  • DOI: 10.1021/ar100023y

Quantum-Chemical Characterization of the Properties and Reactivities of Metal–Organic Frameworks
journal, April 2015

  • Odoh, Samuel O.; Cramer, Christopher J.; Truhlar, Donald G.
  • Chemical Reviews, Vol. 115, Issue 12
  • DOI: 10.1021/cr500551h

Ab-Initio Study of the Adsorption and Separation of NO x and SO x Gases in Functionalized IRMOF Ligands
journal, November 2011

  • Fioretos, Konstantinos A.; Psofogiannakis, George M.; Froudakis, George E.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 50
  • DOI: 10.1021/jp2084378

Trace Flue Gas Contaminants Poison Coordinatively Unsaturated Metal–Organic Frameworks: Implications for CO 2 Adsorption and Separation
journal, September 2012

  • Yu, Kuang; Kiesling, Kalin; Schmidt, J. R.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 38
  • DOI: 10.1021/jp307894e

Adsorption of selected gases on metal-organic frameworks and covalent organic frameworks: A comparative grand canonical Monte Carlo simulation
journal, June 2012

  • Wang, Lili; Wang, Lu; Zhao, Jijun
  • Journal of Applied Physics, Vol. 111, Issue 11
  • DOI: 10.1063/1.4726255

How Well Do Metal–Organic Frameworks Tolerate Flue Gas Impurities?
journal, October 2012

  • Ding, Lifeng; Yazaydin, A. Özgür
  • The Journal of Physical Chemistry C, Vol. 116, Issue 43
  • DOI: 10.1021/jp308717y

NO Disproportionation at a Mononuclear Site-Isolated Fe 2+ Center in Fe 2+ -MOF-5
journal, June 2015

  • Brozek, Carl K.; Miller, Jeffrey T.; Stoian, Sebastian A.
  • Journal of the American Chemical Society, Vol. 137, Issue 23
  • DOI: 10.1021/jacs.5b03761

High-Capacity Hydrogen and Nitric Oxide Adsorption and Storage in a Metal−Organic Framework
journal, February 2007

  • Xiao, Bo; Wheatley, Paul S.; Zhao, Xuebo
  • Journal of the American Chemical Society, Vol. 129, Issue 5
  • DOI: 10.1021/ja066098k

Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR
journal, January 2007

  • Bordiga, S.; Regli, L.; Bonino, F.
  • Physical Chemistry Chemical Physics, Vol. 9, Issue 21
  • DOI: 10.1039/b703643d

Adsorption of nitric oxide in metal-organic frameworks: Low temperature IR and EPR spectroscopic evaluation of the role of open metal sites
journal, November 2015


Local Structure of CPO-27-Ni Metallorganic Framework upon Dehydration and Coordination of NO
journal, August 2008

  • Bonino, Francesca; Chavan, Sachin; Vitillo, Jenny G.
  • Chemistry of Materials, Vol. 20, Issue 15
  • DOI: 10.1021/cm800686k

Gradual Release of Strongly Bound Nitric Oxide from Fe 2 (NO) 2 (dobdc)
journal, March 2015

  • Bloch, Eric D.; Queen, Wendy L.; Chavan, Sachin
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/ja5132243

Postsynthetic diazeniumdiolate formation and NO release from MOFs
journal, January 2010

  • Nguyen, Joseph G.; Tanabe, Kristine K.; Cohen, Seth M.
  • CrystEngComm, Vol. 12, Issue 8
  • DOI: 10.1039/c000154f

Nitric Oxide Chemisorption in a Postsynthetically Modified Metal−Organic Framework
journal, November 2009

  • Ingleson, Michael J.; Heck, Romain; Gould, Jamie A.
  • Inorganic Chemistry, Vol. 48, Issue 21
  • DOI: 10.1021/ic9015977

UiO-66-polyether block amide mixed matrix membranes for CO2 separation
journal, September 2016


Post-synthetic Structural Processing in a Metal–Organic Framework Material as a Mechanism for Exceptional CO 2 /N 2 Selectivity
journal, May 2013

  • Bloch, Witold M.; Babarao, Ravichandar; Hill, Matthew R.
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja4032049

Systematic modulation and enhancement of CO2 : N2 selectivity and water stability in an isoreticular series of bio-MOF-11 analogues
journal, January 2013

  • Li, Tao; Chen, De-Li; Sullivan, Jeanne E.
  • Chemical Science, Vol. 4, Issue 4
  • DOI: 10.1039/c3sc22207a

Adsorption and Separation of Light Gases on an Amino-Functionalized Metal-Organic Framework: An Adsorption and In Situ XRD Study
journal, February 2012

  • Couck, Sarah; Gobechiya, Elena; Kirschhock, Christine E. A.
  • ChemSusChem, Vol. 5, Issue 4
  • DOI: 10.1002/cssc.201100378

Ligand Functionalization and Its Effect on CO 2 Adsorption in Microporous Metal-Organic Frameworks
journal, January 2013

  • Liu, Hui; Zhao, Yonggang; Zhang, Zhijuan
  • Chemistry - An Asian Journal, Vol. 8, Issue 4
  • DOI: 10.1002/asia.201201081

Temperature-/Pressure-Dependent Selective Separation of CO2 or Benzene in a Chiral Metal-Organic Framework Material
journal, June 2012


The Effect of Methyl Functionalization on Microporous Metal-Organic Frameworks' Capacity and Binding Energy for Carbon Dioxide Adsorption
journal, October 2011

  • Liu, Hui; Zhao, Yonggang; Zhang, Zhijuan
  • Advanced Functional Materials, Vol. 21, Issue 24
  • DOI: 10.1002/adfm.201101479

Two ZnIIMetal-Organic Frameworks with Coordinatively Unsaturated Metal Sites: Structures, Adsorption, and Catalysis
journal, October 2012

  • Lin, Xiao-Ming; Li, Ting-Ting; Wang, Yi-Wei
  • Chemistry - An Asian Journal, Vol. 7, Issue 12
  • DOI: 10.1002/asia.201200601

Interpenetrated Zirconium–Organic Frameworks: Small Cavities versus Functionalization for CO 2 Capture
journal, June 2016

  • Babarao, Ravichandar; Rubio-Martinez, Marta; Hill, Matthew R.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 24
  • DOI: 10.1021/acs.jpcc.6b01484

Adsorption Equilibrium of N2, CH4, and CO2 on MIL-101
journal, September 2015


Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes
journal, April 2016

  • Tanaka, Hiromasa; Nishibayashi, Yoshiaki; Yoshizawa, Kazunari
  • Accounts of Chemical Research, Vol. 49, Issue 5
  • DOI: 10.1021/acs.accounts.6b00033

Conversion of Dinitrogen to Nitriles at a Multinuclear Titanium Framework
journal, September 2016

  • Guru, Murali Mohan; Shima, Takanori; Hou, Zhaomin
  • Angewandte Chemie International Edition, Vol. 55, Issue 40
  • DOI: 10.1002/anie.201607426

Design of a Metal–Organic Framework with Enhanced Back Bonding for Separation of N 2 and CH 4
journal, December 2013

  • Lee, Kyuho; Isley, William C.; Dzubak, Allison L.
  • Journal of the American Chemical Society, Vol. 136, Issue 2
  • DOI: 10.1021/ja4102979

Design, Synthesis, Characterization, and Catalytic Properties of a Large-Pore Metal-Organic Framework Possessing Single-Site Vanadyl(monocatecholate) Moieties
journal, July 2013

  • Nguyen, Huong Giang T.; Weston, Mitchell H.; Sarjeant, Amy A.
  • Crystal Growth & Design, Vol. 13, Issue 8
  • DOI: 10.1021/cg400500t

Reusable Oxidation Catalysis Using Metal-Monocatecholato Species in a Robust Metal–Organic Framework
journal, March 2014

  • Fei, Honghan; Shin, JaeWook; Meng, Ying Shirley
  • Journal of the American Chemical Society, Vol. 136, Issue 13
  • DOI: 10.1021/ja411627z

Comparative study of titanium-functionalized UiO-66: support effect on the oxidation of cyclohexene using hydrogen peroxide
journal, January 2015

  • Nguyen, Huong Giang T.; Mao, Lily; Peters, Aaron W.
  • Catalysis Science & Technology, Vol. 5, Issue 9
  • DOI: 10.1039/C5CY00825E

Synthesis and Metalation of Catechol-Functionalized Porous Organic Polymers
journal, March 2012

  • Weston, Mitchell H.; Farha, Omar K.; Hauser, Brad G.
  • Chemistry of Materials, Vol. 24, Issue 7
  • DOI: 10.1021/cm2034646

Stabilizing unstable species through single-site isolation: a catalytically active TaV trialkyl in a porous organic polymer
journal, January 2013

  • Tanabe, Kristine K.; Siladke, Nathan A.; Broderick, Erin M.
  • Chemical Science, Vol. 4, Issue 6
  • DOI: 10.1039/c3sc22268c

Removal of airborne toxic chemicals by porous organic polymers containing metal–catecholates
journal, January 2013

  • Weston, Mitchell H.; Peterson, Gregory W.; Browe, Matthew A.
  • Chemical Communications, Vol. 49, Issue 29, p. 2995-2997
  • DOI: 10.1039/c3cc40475g

Enhancement of Hydrogen Adsorption in Metal−Organic Frameworks by Mg 2+ Functionalization: A Multiscale Computational Study
journal, September 2010

  • Stergiannakos, Taxiarchis; Tylianakis, Emmanuel; Klontzas, Emmanouel
  • The Journal of Physical Chemistry C, Vol. 114, Issue 39
  • DOI: 10.1021/jp107323p

Metal Alkoxide Functionalization in Metal−Organic Frameworks for Enhanced Ambient-Temperature Hydrogen Storage
journal, December 2010

  • Getman, Rachel B.; Miller, Jacob H.; Wang, Kenneth
  • The Journal of Physical Chemistry C, Vol. 115, Issue 5
  • DOI: 10.1021/jp1094068

Extraction of Americium(III), Plutonium(IV, V) and Neptunium(V) with Calixarenes
journal, September 2012

  • Abramov, Alexander A.; Vasiliev, Aleksandr N.; Dubovaya, Olga V.
  • Mendeleev Communications, Vol. 22, Issue 5
  • DOI: 10.1016/j.mencom.2012.09.011

Computational Screening of Metal Catecholates for Ammonia Capture in Metal–Organic Frameworks
journal, March 2015

  • Kim, Ki Chul; Moghadam, Peyman Z.; Fairen-Jimenez, David
  • Industrial & Engineering Chemistry Research, Vol. 54, Issue 13
  • DOI: 10.1021/ie504945w

Production of Formic Acid via Hydrogenation of CO 2 over a Copper-Alkoxide-Functionalized MOF: A Mechanistic Study
journal, August 2013

  • Maihom, Thana; Wannakao, Sippakorn; Boekfa, Bundet
  • The Journal of Physical Chemistry C, Vol. 117, Issue 34
  • DOI: 10.1021/jp405178p

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
journal, November 2006

  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 125, Issue 19, Article No. 194101
  • DOI: 10.1063/1.2370993

Rationale for mixing exact exchange with density functional approximations
journal, December 1996

  • Perdew, John P.; Ernzerhof, Matthias; Burke, Kieron
  • The Journal of Chemical Physics, Vol. 105, Issue 22, p. 9982-9985
  • DOI: 10.1063/1.472933

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
journal, January 2005

  • Weigend, Florian; Ahlrichs, Reinhart
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 18, p. 3297-3305
  • DOI: 10.1039/b508541a

Interference-corrected explicitly-correlated second-order perturbation theory
journal, February 2011

  • Vogiatzis, Konstantinos D.; Barnes, Ericka C.; Klopper, Wim
  • Chemical Physics Letters, Vol. 503, Issue 1-3
  • DOI: 10.1016/j.cplett.2010.12.065

Accurate atomization energies from combining coupled-cluster computations with interference-corrected explicitly correlated second-order perturbation theory
journal, January 2014

  • Vogiatzis, Konstantinos D.; Haunschild, Robin; Klopper, Wim
  • Theoretical Chemistry Accounts, Vol. 133, Issue 3
  • DOI: 10.1007/s00214-014-1446-0

Ab Initio Study of the Adsorption of Small Molecules on Metal–Organic Frameworks with Oxo-centered Trimetallic Building Units: The Role of the Undercoordinated Metal Ion
journal, August 2015


A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
journal, May 1980


Second‐order perturbation theory with a complete active space self‐consistent field reference function
journal, January 1992

  • Andersson, Kerstin; Malmqvist, Per‐Åke; Roos, Björn O.
  • The Journal of Chemical Physics, Vol. 96, Issue 2
  • DOI: 10.1063/1.462209

MOLCAS-a software for multiconfigurational quantum chemistry calculations: MOLCAS
journal, September 2012

  • Aquilante, Francesco; Pedersen, Thomas Bondo; Veryazov, Valera
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 3, Issue 2
  • DOI: 10.1002/wcms.1117

Fast noniterative orbital localization for large molecules
journal, November 2006

  • Aquilante, Francesco; Bondo Pedersen, Thomas; Sánchez de Merás, Alfredo
  • The Journal of Chemical Physics, Vol. 125, Issue 17
  • DOI: 10.1063/1.2360264

A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2)
journal, September 2004


The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
journal, October 1970


Works referencing / citing this record:

Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities
journal, October 2018

  • Vogiatzis, Konstantinos D.; Polynski, Mikhail V.; Kirkland, Justin K.
  • Chemical Reviews, Vol. 119, Issue 4
  • DOI: 10.1021/acs.chemrev.8b00361