DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Emergence of the Vortex State in Confined Ferroelectric Heterostructures

Abstract

The manipulation of charge and lattice degrees of freedom in atomically precise, low-dimensional ferroelectric superlattices can lead to exotic polar structures, such as a vortex state. The role of interfaces in the evolution of the vortex state in these superlattices (and the associated electrostatic and elastic boundary conditions they produce) has remained unclear. Here, the toroidal state, arranged in arrays of alternating clockwise/counterclockwise polar vortices, in a confined SrTiO$$_3$$/PbTiO$$_3$$/SrTiO$$_3$$ trilayer is investigated. By utilizing a combination of transmission electron microscopy, synchrotron-based X-ray diffraction, and phase-field modeling, the phase transition as a function of layer thickness (number of unit cells) demonstrates how the vortex state emerges from the ferroelectric state by varying the thickness of the confined PbTiO$$_3$$ layer. Intriguingly, the vortex state arises at head-to-head domain boundaries in ferroelectric α$$_1$$/α$$_2$$ twin structures. In turn, by varying the total number of PbTiO$$_3$$ layers (moving from trilayer to superlattices), it is possible to manipulate the long-range interactions among multiple confined PbTiO$$_3$$ layers to stabilize the vortex state. Finally, this work provides a new understanding of how the different energies work together to produce this exciting new state of matter and can contribute to the design of novel states and potential memory applications.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [3];  [5];  [1];  [1]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States)
  3. Pennsylvania State Univ., University Park, PA (United States)
  4. Carnegie Mellon Univ., Pittsburgh, PA (United States)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); Gordon and Betty Moore Foundation (GBMF)
OSTI Identifier:
1633242
Alternate Identifier(s):
OSTI ID: 1543168
Grant/Contract Number:  
AC02-05CH11231; AC02-06CH11357; FG02-07ER46417; DGE-1106400; DMR-1420620; DMR-1210588; GBMF5307; AC02‐06CH11357; FG02‐07ER46417
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 31; Journal Issue: 36; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Hsu, Shang‐Lin, McCarter, Margaret R., Dai, Cheng, Hong, Zijian, Chen, Long‐Qing, Nelson, Christopher T., Martin, Lane W., and Ramesh, Ramamoorthy. Emergence of the Vortex State in Confined Ferroelectric Heterostructures. United States: N. p., 2019. Web. doi:10.1002/adma.201901014.
Hsu, Shang‐Lin, McCarter, Margaret R., Dai, Cheng, Hong, Zijian, Chen, Long‐Qing, Nelson, Christopher T., Martin, Lane W., & Ramesh, Ramamoorthy. Emergence of the Vortex State in Confined Ferroelectric Heterostructures. United States. https://doi.org/10.1002/adma.201901014
Hsu, Shang‐Lin, McCarter, Margaret R., Dai, Cheng, Hong, Zijian, Chen, Long‐Qing, Nelson, Christopher T., Martin, Lane W., and Ramesh, Ramamoorthy. Fri . "Emergence of the Vortex State in Confined Ferroelectric Heterostructures". United States. https://doi.org/10.1002/adma.201901014. https://www.osti.gov/servlets/purl/1633242.
@article{osti_1633242,
title = {Emergence of the Vortex State in Confined Ferroelectric Heterostructures},
author = {Hsu, Shang‐Lin and McCarter, Margaret R. and Dai, Cheng and Hong, Zijian and Chen, Long‐Qing and Nelson, Christopher T. and Martin, Lane W. and Ramesh, Ramamoorthy},
abstractNote = {The manipulation of charge and lattice degrees of freedom in atomically precise, low-dimensional ferroelectric superlattices can lead to exotic polar structures, such as a vortex state. The role of interfaces in the evolution of the vortex state in these superlattices (and the associated electrostatic and elastic boundary conditions they produce) has remained unclear. Here, the toroidal state, arranged in arrays of alternating clockwise/counterclockwise polar vortices, in a confined SrTiO$_3$/PbTiO$_3$/SrTiO$_3$ trilayer is investigated. By utilizing a combination of transmission electron microscopy, synchrotron-based X-ray diffraction, and phase-field modeling, the phase transition as a function of layer thickness (number of unit cells) demonstrates how the vortex state emerges from the ferroelectric state by varying the thickness of the confined PbTiO$_3$ layer. Intriguingly, the vortex state arises at head-to-head domain boundaries in ferroelectric α$_1$/α$_2$ twin structures. In turn, by varying the total number of PbTiO$_3$ layers (moving from trilayer to superlattices), it is possible to manipulate the long-range interactions among multiple confined PbTiO$_3$ layers to stabilize the vortex state. Finally, this work provides a new understanding of how the different energies work together to produce this exciting new state of matter and can contribute to the design of novel states and potential memory applications.},
doi = {10.1002/adma.201901014},
journal = {Advanced Materials},
number = 36,
volume = 31,
place = {United States},
year = {Fri Jul 19 00:00:00 EDT 2019},
month = {Fri Jul 19 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3
journal, March 2011


Effect of electrical boundary conditions on ferroelectric domain structures in thin films
journal, July 2002

  • Li, Y. L.; Hu, S. Y.; Liu, Z. K.
  • Applied Physics Letters, Vol. 81, Issue 3
  • DOI: 10.1063/1.1492025

Spontaneous Vortex Nanodomain Arrays at Ferroelectric Heterointerfaces
journal, February 2011

  • Nelson, Christopher T.; Winchester, Benjamin; Zhang, Yi
  • Nano Letters, Vol. 11, Issue 2
  • DOI: 10.1021/nl1041808

Unusual phase transitions in ferroelectric nanodisks and nanorods
journal, December 2004

  • Naumov, Ivan I.; Bellaiche, L.; Fu, Huaxiang
  • Nature, Vol. 432, Issue 7018
  • DOI: 10.1038/nature03107

Thermodynamic theory of PbTiO 3
journal, October 1987

  • Haun, M. J.; Furman, E.; Jang, S. J.
  • Journal of Applied Physics, Vol. 62, Issue 8
  • DOI: 10.1063/1.339293

Current-driven dynamics of chiral ferromagnetic domain walls
journal, June 2013

  • Emori, Satoru; Bauer, Uwe; Ahn, Sung-Min
  • Nature Materials, Vol. 12, Issue 7
  • DOI: 10.1038/nmat3675

Improper ferroelectricity in perovskite oxide artificial superlattices
journal, April 2008

  • Bousquet, Eric; Dawber, Matthew; Stucki, Nicolas
  • Nature, Vol. 452, Issue 7188
  • DOI: 10.1038/nature06817

Skyrmions on the track
journal, March 2013

  • Fert, Albert; Cros, Vincent; Sampaio, João
  • Nature Nanotechnology, Vol. 8, Issue 3
  • DOI: 10.1038/nnano.2013.29

Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk
journal, January 2012

  • Im, Mi-Young; Fischer, Peter; Yamada, Keisuke
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1978

Observation of polar vortices in oxide superlattices
journal, January 2016

  • Yadav, A. K.; Nelson, C. T.; Hsu, S. L.
  • Nature, Vol. 530, Issue 7589
  • DOI: 10.1038/nature16463

Phase field simulations of ferroelectrics domain structures in PbZrxTi1−xO3 bilayers
journal, May 2013


Phase-locking of magnetic vortices mediated by antivortices
journal, June 2009


Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics
journal, June 2016


A way forward along domain walls
journal, March 2009

  • Béa, Hélène; Paruch, Patrycja
  • Nature Materials, Vol. 8, Issue 3
  • DOI: 10.1038/nmat2393

Electrostatic Coupling and Local Structural Distortions at Interfaces in Ferroelectric/Paraelectric Superlattices
journal, May 2012

  • Zubko, P.; Jecklin, N.; Torres-Pardo, A.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl3003717

Stability of Polar Vortex Lattice in Ferroelectric Superlattices
journal, March 2017


Effect of “symmetry mismatch” on the domain structure of rhombohedral BiFeO 3 thin films
journal, May 2014

  • Chen, Z. H.; Damodaran, A. R.; Xu, R.
  • Applied Physics Letters, Vol. 104, Issue 18
  • DOI: 10.1063/1.4875801

Topological domain walls in helimagnets
journal, March 2018


Direct Observation of Internal Spin Structure of Magnetic Vortex Cores
journal, October 2002


Properties of rare-earth scandate single crystals (Re=Nd−Dy)
journal, May 2008


Phase coexistence and electric-field control of toroidal order in oxide superlattices
journal, August 2017

  • Damodaran, A. R.; Clarkson, J. D.; Hong, Z.
  • Nature Materials, Vol. 16, Issue 10
  • DOI: 10.1038/nmat4951

Domain wall nanoelectronics
journal, February 2012


Observation of Bloch-point domain walls in cylindrical magnetic nanowires
journal, May 2014


Emergent chirality in the electric polarization texture of titanate superlattices
journal, January 2018

  • Shafer, Padraic; García-Fernández, Pablo; Aguado-Puente, Pablo
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 5
  • DOI: 10.1073/pnas.1711652115

Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces
journal, November 2016

  • Soumyanarayanan, Anjan; Reyren, Nicolas; Fert, Albert
  • Nature, Vol. 539, Issue 7630
  • DOI: 10.1038/nature19820

Applications of semi-implicit Fourier-spectral method to phase field equations
journal, February 1998


Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films
journal, April 2015


Three-dimensional nanomagnetism
journal, June 2017

  • Fernández-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15756

Phase-Field Method of Phase Transitions/Domain Structures in Ferroelectric Thin Films: A Review
journal, June 2008


Magnetic Vortex Core Observation in Circular Dots of Permalloy
journal, August 2000


Anisotropic elasticity of DyScO 3 substrates
journal, September 2012


Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3
journal, November 2011

  • Balke, Nina; Winchester, Benjamin; Ren, Wei
  • Nature Physics, Vol. 8, Issue 1
  • DOI: 10.1038/nphys2132

Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films
journal, January 2002


Unusual Phase Transitions in Ferroelectric Nanodisks and Nanorods
journal, March 2005


Magnetoelectric coupling of domains, domain walls and vortices in a multiferroic with independent magnetic and electric order
journal, May 2021


Three-dimensional nanomagnetism
text, January 2017

  • Fernández-Pacheco, A.; Streubel, R.; Fruchart, O.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.10808

Current-driven dynamics of chiral ferromagnetic domain walls
text, January 2013


Observation of Bloch-point domain walls in cylindrical magnetic nanowires
text, January 2013


Works referencing / citing this record:

Giant Uniaxial Strain Ferroelectric Domain Tuning in Freestanding PbTiO 3 Films
journal, April 2020

  • Han, Lu; Fang, Yanhan; Zhao, Yunqi
  • Advanced Materials Interfaces, Vol. 7, Issue 7
  • DOI: 10.1002/admi.201901604

Three-dimensional polarization vortex configuration evolution in compressed BaTiO 3 /SrTiO 3 superlattice
journal, December 2019

  • Peng, Di; Yang, Xinhua; Jiang, Wenkai
  • Journal of Applied Physics, Vol. 126, Issue 24
  • DOI: 10.1063/1.5130956