DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vortex Domain Walls in Ferroelectrics

Abstract

Controlling the domain formation in ferroelectric materials at the nanoscale is a fertile ground to explore emergent phenomena and their technological prospects. For example, charged ferroelectric domain walls in BiFeO3 and ErMnO3 exhibit significantly enhanced conductivity which could serve as the foundation for next-generation circuits. In this work, we describe a concept in which polar vortices perform the same role as a ferroelectric domain wall in classical domain structures with the key difference being that the polar vortices can accommodate charged (i.e., head-to-head and tail-to-tail) domains, for example, in ferroelectric PbTiO3/dielectric SrTiO3 superlattices. Such a vortex domain wall structure can be manipulated in a reversible fashion under an external applied field.

Authors:
ORCiD logo [1];  [2];  [3];  [2];  [1];  [4];  [5];  [6];  [6]
  1. Zhejiang Univ. (China)
  2. Univ. of California, Berkeley, CA (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Univ. de Cantabria, Santander (Spain)
  5. Pennsylvania State Univ., University Park, PA (United States)
  6. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE)
OSTI Identifier:
1880840
Alternate Identifier(s):
OSTI ID: 1806304; OSTI ID: 1806307; OSTI ID: 1840942
Grant/Contract Number:  
SC0020145; AC02-05CH11231; SC0012375; ACI-1548562; ACI-1445606; DMR-170006
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 21; Journal Issue: 8; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Vortex domain wall; Ferroelectric superlattices; Phase-field simulations; Charged domain wall; Chemical structure; Deposition; Polarization; Layers; Lattices

Citation Formats

Hong, Zijian, Das, Sujit, Nelson, Christopher, Yadav, Ajay, Wu, Yongjun, Junquera, Javier, Chen, Long-Qing, Martin, Lane W., and Ramesh, Ramamoorthy. Vortex Domain Walls in Ferroelectrics. United States: N. p., 2021. Web. doi:10.1021/acs.nanolett.1c00404.
Hong, Zijian, Das, Sujit, Nelson, Christopher, Yadav, Ajay, Wu, Yongjun, Junquera, Javier, Chen, Long-Qing, Martin, Lane W., & Ramesh, Ramamoorthy. Vortex Domain Walls in Ferroelectrics. United States. https://doi.org/10.1021/acs.nanolett.1c00404
Hong, Zijian, Das, Sujit, Nelson, Christopher, Yadav, Ajay, Wu, Yongjun, Junquera, Javier, Chen, Long-Qing, Martin, Lane W., and Ramesh, Ramamoorthy. Mon . "Vortex Domain Walls in Ferroelectrics". United States. https://doi.org/10.1021/acs.nanolett.1c00404. https://www.osti.gov/servlets/purl/1880840.
@article{osti_1880840,
title = {Vortex Domain Walls in Ferroelectrics},
author = {Hong, Zijian and Das, Sujit and Nelson, Christopher and Yadav, Ajay and Wu, Yongjun and Junquera, Javier and Chen, Long-Qing and Martin, Lane W. and Ramesh, Ramamoorthy},
abstractNote = {Controlling the domain formation in ferroelectric materials at the nanoscale is a fertile ground to explore emergent phenomena and their technological prospects. For example, charged ferroelectric domain walls in BiFeO3 and ErMnO3 exhibit significantly enhanced conductivity which could serve as the foundation for next-generation circuits. In this work, we describe a concept in which polar vortices perform the same role as a ferroelectric domain wall in classical domain structures with the key difference being that the polar vortices can accommodate charged (i.e., head-to-head and tail-to-tail) domains, for example, in ferroelectric PbTiO3/dielectric SrTiO3 superlattices. Such a vortex domain wall structure can be manipulated in a reversible fashion under an external applied field.},
doi = {10.1021/acs.nanolett.1c00404},
journal = {Nano Letters},
number = 8,
volume = 21,
place = {United States},
year = {Mon Apr 19 00:00:00 EDT 2021},
month = {Mon Apr 19 00:00:00 EDT 2021}
}

Works referenced in this record:

Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3
journal, March 2011


Control of Vortices by Homogeneous Fields in Asymmetric Ferroelectric and Ferromagnetic Rings
journal, January 2008


Effect of electrical boundary conditions on ferroelectric domain structures in thin films
journal, July 2002

  • Li, Y. L.; Hu, S. Y.; Liu, Z. K.
  • Applied Physics Letters, Vol. 81, Issue 3
  • DOI: 10.1063/1.1492025

Spontaneous Vortex Nanodomain Arrays at Ferroelectric Heterointerfaces
journal, February 2011

  • Nelson, Christopher T.; Winchester, Benjamin; Zhang, Yi
  • Nano Letters, Vol. 11, Issue 2
  • DOI: 10.1021/nl1041808

Highly charged 180 degree head-to-head domain walls in lead titanate
journal, December 2020


Spatially resolved steady-state negative capacitance
journal, January 2019


Dzyaloshinskii–Moriya-like interaction in ferroelectrics and antiferroelectrics
journal, October 2020


Theory of hypothetical ferroelectric superlattices incorporating head-to-head and tail-to-tail 180° domain walls
journal, January 2006


Observation of polar vortices in oxide superlattices
journal, January 2016

  • Yadav, A. K.; Nelson, C. T.; Hsu, S. L.
  • Nature, Vol. 530, Issue 7589
  • DOI: 10.1038/nature16463

Observation of room-temperature polar skyrmions
journal, April 2019


The role of the background dielectric susceptibility in uniaxial ferroelectrics
journal, July 1986


Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy
journal, June 2017

  • Cherifi-Hertel, Salia; Bulou, Hervé; Hertel, Riccardo
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15768

Powder profile refinement of lead zirconate titanate at several temperatures. II. Pure PbTiO 3
journal, April 1978

  • Glazer, A. M.; Mabud, S. A.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 34, Issue 4
  • DOI: 10.1107/S0567740878004938

Modulation of charged a 1 /a 2 domains and piezoresponses of tensile strained PbTiO 3 films by the cooling rate
journal, January 2019

  • Ma, Jinyuan; Zhu, Yinlian; Tang, Yunlong
  • RSC Advances, Vol. 9, Issue 25
  • DOI: 10.1039/C9RA02485A

Stability of Polar Vortex Lattice in Ferroelectric Superlattices
journal, March 2017


Ab initio study of ferroelectric domain walls in PbTiO 3
journal, March 2002


Surface effect on domain wall width in ferroelectrics
journal, October 2009

  • Eliseev, Eugene A.; Morozovska, Anna N.; Kalinin, Sergei V.
  • Journal of Applied Physics, Vol. 106, Issue 8
  • DOI: 10.1063/1.3236644

Anisotropic conductance at improper ferroelectric domain walls
journal, February 2012

  • Meier, D.; Seidel, J.; Cano, A.
  • Nature Materials, Vol. 11, Issue 4
  • DOI: 10.1038/nmat3249

Conductive tail-to-tail domain walls in epitaxial BiFeO 3 films
journal, August 2018

  • Jin, Yaming; Xiao, Shuyu; Yang, Jan-Chi
  • Applied Physics Letters, Vol. 113, Issue 8
  • DOI: 10.1063/1.5045721

XSEDE: Accelerating Scientific Discovery
journal, September 2014

  • Towns, John; Cockerill, Timothy; Dahan, Maytal
  • Computing in Science & Engineering, Vol. 16, Issue 5
  • DOI: 10.1109/MCSE.2014.80

Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation
journal, January 2014


Phase coexistence and electric-field control of toroidal order in oxide superlattices
journal, August 2017

  • Damodaran, A. R.; Clarkson, J. D.; Hong, Z.
  • Nature Materials, Vol. 16, Issue 10
  • DOI: 10.1038/nmat4951

Free-electron gas at charged domain walls in insulating BaTiO3
journal, May 2013

  • Sluka, Tomas; Tagantsev, Alexander K.; Bednyakov, Petr
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2839

Magnetic Domain-Wall Logic
journal, September 2005


Polar meron lattice in strained oxide ferroelectrics
journal, June 2020


Emergence of the Vortex State in Confined Ferroelectric Heterostructures
journal, June 2019

  • Hsu, Shang‐Lin; McCarter, Margaret R.; Dai, Cheng
  • Advanced Materials, Vol. 31, Issue 36
  • DOI: 10.1002/adma.201901014

Chirality-Based Vortex Domain-Wall Logic Gates
journal, October 2014


Emergent chirality in the electric polarization texture of titanate superlattices
journal, January 2018

  • Shafer, Padraic; García-Fernández, Pablo; Aguado-Puente, Pablo
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 5
  • DOI: 10.1073/pnas.1711652115

Blowing polar skyrmion bubbles in oxide superlattices
journal, June 2018


Giant Resistive Switching via Control of Ferroelectric Charged Domain Walls
journal, May 2016

  • Li, Linze; Britson, Jason; Jokisaari, Jacob R.
  • Advanced Materials, Vol. 28, Issue 31
  • DOI: 10.1002/adma.201600160

Head-to-head domain wall structures in wide permalloy strips
journal, February 2015


Magnetic Domain-Wall Racetrack Memory
journal, April 2008


Applications of semi-implicit Fourier-spectral method to phase field equations
journal, February 1998


Giant piezoelectric resistance in ferroelectric tunnel junctions
journal, January 2009


Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films
journal, April 2015


Phase-Field Method of Phase Transitions/Domain Structures in Ferroelectric Thin Films: A Review
journal, June 2008


Physics and applications of charged domain walls
journal, November 2018

  • Bednyakov, Petr S.; Sturman, Boris I.; Sluka, Tomas
  • npj Computational Materials, Vol. 4, Issue 1
  • DOI: 10.1038/s41524-018-0121-8

Dynamics and manipulation of ferroelectric domain walls in bismuth ferrite thin films
journal, November 2019

  • Xiao, Shuyu; Jin, Yaming; Lu, Xiaomei
  • National Science Review, Vol. 7, Issue 2
  • DOI: 10.1093/nsr/nwz176

Local 90° switching in Pb(Zr0.2Ti0.8)O3 thin film: Phase-field modeling
journal, July 2014


Structure and energy of charged domain walls in ferroelectrics
conference, August 2009

  • Gureev, M. Y.; Tagantsev, A. K.; Setter, N.
  • 2009 18th IEEE International Symposium on the Applications of Ferroelectrics (ISAF)
  • DOI: 10.1109/ISAF.2009.5307622

Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3
journal, November 2011

  • Balke, Nina; Winchester, Benjamin; Ren, Wei
  • Nature Physics, Vol. 8, Issue 1
  • DOI: 10.1038/nphys2132

Local negative permittivity and topological phase transition in polar skyrmions
journal, October 2020


Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films
journal, January 2002


Head-to-head and tail-to-tail 180 ° domain walls in an isolated ferroelectric
journal, May 2011


Current vortices and magnetic fields driven by moving polar twin boundaries in ferroelastic materials
journal, September 2020


Ferroelectric Bloch-line switching: A paradigm for memory devices?
journal, December 2014

  • Salje, E. K. H.; Scott, J. F.
  • Applied Physics Letters, Vol. 105, Issue 25
  • DOI: 10.1063/1.4905001

Formation of charged ferroelectric domain walls with controlled periodicity
journal, October 2015

  • Bednyakov, Petr S.; Sluka, Tomas; Tagantsev, Alexander K.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep15819