DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular Mechanics Simulations and Improved Tight-Binding Hamiltonians for Artificial Light Harvesting Systems: Predicting Geometric Distributions, Disorder, and Spectroscopy of Chromophores in a Protein Environment

Abstract

We present molecular mechanics and spectroscopic calculations on prototype artificial light harvesting systems consisting of chromophores attached to a tobacco mosaic virus (TMV) protein scaffold. These systems have been synthesized and characterized spectroscopically, but information about the microscopic configurations and geometry of these TMV-templated chromophore assemblies is largely unknown. We use a Monte Carlo conformational search algorithm to determine the preferred positions and orientations of two chromophores, Coumarin 343 together with its linker and Oregon Green 488, when these are attached at two different sites (104 and 123) on the TMV protein. The resulting geometric information shows that the extent of disorder and aggregation properties and therefore the optical properties of the TMV-templated chromophore assembly are highly dependent on both the choice of chromophores and the protein site to which they are bound. We use the results of the conformational search as geometric parameters together with an improved tight-binding Hamiltonian to simulate the linear absorption spectra and compare with experimental spectral measurements. The ideal dipole approximation to the Hamiltonian is not valid because the distance between chromophores can be very small. Finally, we found that using the geometries from the conformational search is necessary to reproduce the features of themore » experimental spectral peaks.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [2]; ORCiD logo [2];  [2]
  1. Pohnag Univ. of Science and Technology (Korea); Univ. of California, Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States)
  3. Univ. of California, Berkeley, CA (United States); California State Univ., Easy Bay, CA (United States)
  4. Univ. of California, Berkeley, CA (United States); Kansas State Univ., Manhattan, KS (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); Defense Advanced Research Projects Agency (DARPA)
OSTI Identifier:
1604660
Grant/Contract Number:  
AC02-05CH11231; N66001-10-4068
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 122; Journal Issue: 51; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; monomers; hamiltonians; chromophores; energy; mathematical methods

Citation Formats

Lee, Joonho, Lee, Donghyun, Kocherzhenko, Aleksey A., Greenman, Loren, Finley, Daniel T., Francis, Matthew B., and Whaley, K. Birgitta. Molecular Mechanics Simulations and Improved Tight-Binding Hamiltonians for Artificial Light Harvesting Systems: Predicting Geometric Distributions, Disorder, and Spectroscopy of Chromophores in a Protein Environment. United States: N. p., 2018. Web. doi:10.1021/acs.jpcb.8b08858.
Lee, Joonho, Lee, Donghyun, Kocherzhenko, Aleksey A., Greenman, Loren, Finley, Daniel T., Francis, Matthew B., & Whaley, K. Birgitta. Molecular Mechanics Simulations and Improved Tight-Binding Hamiltonians for Artificial Light Harvesting Systems: Predicting Geometric Distributions, Disorder, and Spectroscopy of Chromophores in a Protein Environment. United States. https://doi.org/10.1021/acs.jpcb.8b08858
Lee, Joonho, Lee, Donghyun, Kocherzhenko, Aleksey A., Greenman, Loren, Finley, Daniel T., Francis, Matthew B., and Whaley, K. Birgitta. Tue . "Molecular Mechanics Simulations and Improved Tight-Binding Hamiltonians for Artificial Light Harvesting Systems: Predicting Geometric Distributions, Disorder, and Spectroscopy of Chromophores in a Protein Environment". United States. https://doi.org/10.1021/acs.jpcb.8b08858. https://www.osti.gov/servlets/purl/1604660.
@article{osti_1604660,
title = {Molecular Mechanics Simulations and Improved Tight-Binding Hamiltonians for Artificial Light Harvesting Systems: Predicting Geometric Distributions, Disorder, and Spectroscopy of Chromophores in a Protein Environment},
author = {Lee, Joonho and Lee, Donghyun and Kocherzhenko, Aleksey A. and Greenman, Loren and Finley, Daniel T. and Francis, Matthew B. and Whaley, K. Birgitta},
abstractNote = {We present molecular mechanics and spectroscopic calculations on prototype artificial light harvesting systems consisting of chromophores attached to a tobacco mosaic virus (TMV) protein scaffold. These systems have been synthesized and characterized spectroscopically, but information about the microscopic configurations and geometry of these TMV-templated chromophore assemblies is largely unknown. We use a Monte Carlo conformational search algorithm to determine the preferred positions and orientations of two chromophores, Coumarin 343 together with its linker and Oregon Green 488, when these are attached at two different sites (104 and 123) on the TMV protein. The resulting geometric information shows that the extent of disorder and aggregation properties and therefore the optical properties of the TMV-templated chromophore assembly are highly dependent on both the choice of chromophores and the protein site to which they are bound. We use the results of the conformational search as geometric parameters together with an improved tight-binding Hamiltonian to simulate the linear absorption spectra and compare with experimental spectral measurements. The ideal dipole approximation to the Hamiltonian is not valid because the distance between chromophores can be very small. Finally, we found that using the geometries from the conformational search is necessary to reproduce the features of the experimental spectral peaks.},
doi = {10.1021/acs.jpcb.8b08858},
journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
number = 51,
volume = 122,
place = {United States},
year = {Tue Nov 20 00:00:00 EST 2018},
month = {Tue Nov 20 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Photosynthetic Excitons
book, January 2000

  • van Amerongen, Herbert; van Grondelle, Rienk; Valkunas, Leonas
  • World Scientific
  • DOI: 10.1142/3609

Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria
journal, April 1995

  • McDermott, G.; Prince, S. M.; Freer, A. A.
  • Nature, Vol. 374, Issue 6522
  • DOI: 10.1038/374517a0

Using coherence to enhance function in chemical and biophysical systems
journal, March 2017

  • Scholes, Gregory D.; Fleming, Graham R.; Chen, Lin X.
  • Nature, Vol. 543, Issue 7647
  • DOI: 10.1038/nature21425

Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes
journal, May 2009

  • Ganapathy, S.; Oostergetel, G. T.; Wawrzyniak, P. K.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 21
  • DOI: 10.1073/pnas.0903534106

Light Harvesting and Energy Transfer in Novel Convergently Constructed Dendrimers
journal, May 1999


Directing Energy Transfer within Conjugated Polymer Thin Films
journal, November 2001

  • Kim, Jinsang; McQuade, D. Tyler; Rose, Aimee
  • Journal of the American Chemical Society, Vol. 123, Issue 46
  • DOI: 10.1021/ja016693g

Bioinspired Molecular Design of Light-Harvesting Multiporphyrin Arrays
journal, January 2004

  • Choi, Myung-Seok; Yamazaki, Tomoko; Yamazaki, Iwao
  • Angewandte Chemie International Edition, Vol. 43, Issue 2
  • DOI: 10.1002/anie.200301665

Porphyrin Nanotubes by Ionic Self-Assembly
journal, December 2004

  • Wang, Zhongchun; Medforth, Craig J.; Shelnutt, John A.
  • Journal of the American Chemical Society, Vol. 126, Issue 49
  • DOI: 10.1021/ja045068j

Self-Assembling Light-Harvesting Systems from Synthetically Modified Tobacco Mosaic Virus Coat Proteins
journal, March 2007

  • Miller, Rebekah A.; Presley, Andrew D.; Francis, Matthew B.
  • Journal of the American Chemical Society, Vol. 129, Issue 11
  • DOI: 10.1021/ja063887t

Impact of Assembly State on the Defect Tolerance of TMV-Based Light Harvesting Arrays
journal, May 2010

  • Miller, Rebekah A.; Stephanopoulos, Nicholas; McFarland, Jesse M.
  • Journal of the American Chemical Society, Vol. 132, Issue 17
  • DOI: 10.1021/ja909566z

Exploiting Chromophore–Protein Interactions through Linker Engineering To Tune Photoinduced Dynamics in a Biomimetic Light-Harvesting Platform
journal, May 2018

  • Delor, Milan; Dai, Jing; Roberts, Trevor D.
  • Journal of the American Chemical Society, Vol. 140, Issue 20
  • DOI: 10.1021/jacs.7b13598

Lessons from nature about solar light harvesting
journal, September 2011

  • Scholes, Gregory D.; Fleming, Graham R.; Olaya-Castro, Alexandra
  • Nature Chemistry, Vol. 3, Issue 10
  • DOI: 10.1038/nchem.1145

Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides
journal, July 2001

  • Kaminski, George A.; Friesner, Richard A.; Tirado-Rives, Julian
  • The Journal of Physical Chemistry B, Vol. 105, Issue 28
  • DOI: 10.1021/jp003919d

Note sur la convergence de méthodes de directions conjuguées
journal, January 1969

  • Polak, E.; Ribiere, G.
  • Revue française d'informatique et de recherche opérationnelle. Série rouge, Vol. 3, Issue 16
  • DOI: 10.1051/m2an/196903R100351

Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules
journal, November 2005

  • Dreuw, Andreas; Head-Gordon, Martin
  • Chemical Reviews, Vol. 105, Issue 11
  • DOI: 10.1021/cr0505627

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements
journal, August 1988

  • Petersson, G. A.; Bennett, Andrew; Tensfeldt, Thomas G.
  • The Journal of Chemical Physics, Vol. 89, Issue 4
  • DOI: 10.1063/1.455064

A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms
journal, May 1991

  • Petersson, G. A.; Al‐Laham, Mohammad A.
  • The Journal of Chemical Physics, Vol. 94, Issue 9
  • DOI: 10.1063/1.460447

Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
journal, September 2014


Ab Initio Calculation of Molecular Aggregation Effects: A Coumarin-343 Case Study
journal, October 2013

  • Lee, Donghyun; Greenman, Loren; Sarovar, Mohan
  • The Journal of Physical Chemistry A, Vol. 117, Issue 43
  • DOI: 10.1021/jp405152h

Calculation of size‐intensive transition moments from the coupled cluster singles and doubles linear response function
journal, March 1994

  • Koch, Henrik; Kobayashi, Rika; Sanchez de Merás, Alfredo
  • The Journal of Chemical Physics, Vol. 100, Issue 6
  • DOI: 10.1063/1.466321

Excitons in nanoscale systems
journal, September 2006

  • Scholes, Gregory D.; Rumbles, Garry
  • Nature Materials, Vol. 5, Issue 9
  • DOI: 10.1038/nmat1710

The exciton model in molecular spectroscopy
journal, January 1965

  • Kasha, M.; Rawls, H. R.; Ashraf El-Bayoumi, M.
  • Pure and Applied Chemistry, Vol. 11, Issue 3-4
  • DOI: 10.1351/pac196511030371

Excitons in nanoscale systems
journal, September 2006

  • Scholes, Gregory D.; Rumbles, Garry
  • Nature Materials, Vol. 5, Issue 9
  • DOI: 10.1038/nmat1710

Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes
journal, May 2009

  • Ganapathy, S.; Oostergetel, G. T.; Wawrzyniak, P. K.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 21
  • DOI: 10.1073/pnas.0903534106

The exciton model in molecular spectroscopy
journal, January 1965

  • Kasha, M.; Rawls, H. R.; Ashraf El-Bayoumi, M.
  • Pure and Applied Chemistry, Vol. 11, Issue 3-4
  • DOI: 10.1351/pac196511030371