DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible and Selective CO2 to HCO2- Electrocatalysis near the Thermodynamic Potential

Abstract

Reversible catalysis is an emblem of energy-efficient chemical transformations, but can only be achieved if the changes in free energy of intermediate steps are minimized and the catalytic cycle is devoid of high transition-state barriers. Using these criteria, we show reversible CO2/HCO2- conversion catalyzed by [Pt(depe)2]2+ (depe=1,2-bis(diethylphosphino)ethane). Direct measurement of the free energies associated with each catalytic step correctly predicts a slight bias towards CO2 reduction. We demonstrate how the experimentally measured free energy of each step directly contributes to the <50mV overpotential. We also find that for CO2 reduction, H2 evolution is negligible and the Faradaic efficiency for HCO2- production is nearly quantitative. A free-energy analysis reveals H2 evolution is endergonic, providing a thermodynamic basis for highly selective CO2 reduction.

Authors:
 [1];  [1];  [1]; ORCiD logo [1]
  1. Univ. of California, Irvine, CA (United States)
Publication Date:
Research Org.:
Univ. of California, Irvine, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Sloan Foundation
Contributing Org.:
Canadian Institute for Advanced Research (CIFAR)
OSTI Identifier:
1599223
Alternate Identifier(s):
OSTI ID: 1597124
Grant/Contract Number:  
SC0012150; 0000243266
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 59; Journal Issue: 11; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
10 SYNTHETIC FUELS; Carbon dioxide reduction; electrocatalysis; formate; reversible catalysis; thermochemistry

Citation Formats

Cunningham, Drew W., Barlow, Jeffrey M., Velazquez, Reyna S., and Yang, Jenny Y. Reversible and Selective CO2 to HCO2- Electrocatalysis near the Thermodynamic Potential. United States: N. p., 2019. Web. doi:10.1002/anie.201913198.
Cunningham, Drew W., Barlow, Jeffrey M., Velazquez, Reyna S., & Yang, Jenny Y. Reversible and Selective CO2 to HCO2- Electrocatalysis near the Thermodynamic Potential. United States. https://doi.org/10.1002/anie.201913198
Cunningham, Drew W., Barlow, Jeffrey M., Velazquez, Reyna S., and Yang, Jenny Y. Tue . "Reversible and Selective CO2 to HCO2- Electrocatalysis near the Thermodynamic Potential". United States. https://doi.org/10.1002/anie.201913198. https://www.osti.gov/servlets/purl/1599223.
@article{osti_1599223,
title = {Reversible and Selective CO2 to HCO2- Electrocatalysis near the Thermodynamic Potential},
author = {Cunningham, Drew W. and Barlow, Jeffrey M. and Velazquez, Reyna S. and Yang, Jenny Y.},
abstractNote = {Reversible catalysis is an emblem of energy-efficient chemical transformations, but can only be achieved if the changes in free energy of intermediate steps are minimized and the catalytic cycle is devoid of high transition-state barriers. Using these criteria, we show reversible CO2/HCO2- conversion catalyzed by [Pt(depe)2]2+ (depe=1,2-bis(diethylphosphino)ethane). Direct measurement of the free energies associated with each catalytic step correctly predicts a slight bias towards CO2 reduction. We demonstrate how the experimentally measured free energy of each step directly contributes to the <50mV overpotential. We also find that for CO2 reduction, H2 evolution is negligible and the Faradaic efficiency for HCO2- production is nearly quantitative. A free-energy analysis reveals H2 evolution is endergonic, providing a thermodynamic basis for highly selective CO2 reduction.},
doi = {10.1002/anie.201913198},
journal = {Angewandte Chemie (International Edition)},
number = 11,
volume = 59,
place = {United States},
year = {Tue Dec 17 00:00:00 EST 2019},
month = {Tue Dec 17 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Understanding and Design of Bidirectional and Reversible Catalysts of Multielectron, Multistep Reactions
journal, June 2019

  • Fourmond, Vincent; Wiedner, Eric S.; Shaw, Wendy J.
  • Journal of the American Chemical Society, Vol. 141, Issue 28
  • DOI: 10.1021/jacs.9b04854

Electrocatalysts for hydrogen evolution reaction
journal, April 2017


Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases
journal, July 2012

  • Hexter, S. V.; Grey, F.; Happe, T.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 29
  • DOI: 10.1073/pnas.1204770109

Understanding and Tuning the Catalytic Bias of Hydrogenase
journal, May 2012

  • Abou Hamdan, Abbas; Dementin, Sébastien; Liebgott, Pierre-Pol
  • Journal of the American Chemical Society, Vol. 134, Issue 20
  • DOI: 10.1021/ja301802r

Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic
journal, February 2012

  • Smith, Stuart E.; Yang, Jenny Y.; DuBois, Daniel L.
  • Angewandte Chemie International Edition, Vol. 51, Issue 13, p. 3152-3155
  • DOI: 10.1002/anie.201108461

Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic
journal, February 2012

  • Smith, Stuart E.; Yang, Jenny Y.; DuBois, Daniel L.
  • Angewandte Chemie, Vol. 124, Issue 13
  • DOI: 10.1002/ange.201108461

Achieving Reversible H 2 /H + Interconversion at Room Temperature with Enzyme-Inspired Molecular Complexes: A Mechanistic Study
journal, August 2016


Designing electrochemically reversible H2 oxidation and production catalysts
journal, August 2018


Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Direct formate fuel cells: A review
journal, July 2016


Formate: an Energy Storage and Transport Bridge between Carbon Dioxide and a Formate Fuel Cell in a Single Device
journal, October 2015


Single Iridium Pincer Complex for Roundtrip Electrochemical Conversion between Carbon Dioxide and Formate
journal, March 2019


Reversible interconversion of carbon dioxide and formate by an electroactive enzyme
journal, July 2008

  • Reda, T.; Plugge, C. M.; Abram, N. J.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 31, p. 10654-10658
  • DOI: 10.1073/pnas.0801290105

Reversible Interconversion of CO 2 and Formate by a Molybdenum-Containing Formate Dehydrogenase
journal, October 2014

  • Bassegoda, Arnau; Madden, Christopher; Wakerley, David W.
  • Journal of the American Chemical Society, Vol. 136, Issue 44
  • DOI: 10.1021/ja508647u

Renewable Formate from C–H Bond Formation with CO 2 : Using Iron Carbonyl Clusters as Electrocatalysts
journal, August 2017

  • Loewen, Natalia D.; Neelakantan, Taruna V.; Berben, Louise A.
  • Accounts of Chemical Research, Vol. 50, Issue 9
  • DOI: 10.1021/acs.accounts.7b00302

Tailoring Electrocatalysts for Selective CO 2 or H + Reduction: Iron Carbonyl Clusters as a Case Study
journal, November 2015


Rapid Selective Electrocatalytic Reduction of Carbon Dioxide to Formate by an Iridium Pincer Catalyst Immobilized on Carbon Nanotube Electrodes
journal, June 2014

  • Kang, Peng; Zhang, Sheng; Meyer, Thomas J.
  • Angewandte Chemie International Edition, Vol. 53, Issue 33
  • DOI: 10.1002/anie.201310722

Selective Electrocatalytic Reduction of CO 2 to Formate by Water-Stable Iridium Dihydride Pincer Complexes
journal, March 2012

  • Kang, Peng; Cheng, Chen; Chen, Zuofeng
  • Journal of the American Chemical Society, Vol. 134, Issue 12
  • DOI: 10.1021/ja300543s

Molecular Cobalt Complexes with Pendant Amines for Selective Electrocatalytic Reduction of Carbon Dioxide to Formic Acid
journal, March 2017

  • Roy, Souvik; Sharma, Bhaskar; Pécaut, Jacques
  • Journal of the American Chemical Society, Vol. 139, Issue 10
  • DOI: 10.1021/jacs.6b11474

Directing the reactivity of metal hydrides for selective CO 2 reduction
journal, November 2018

  • Ceballos, Bianca M.; Yang, Jenny Y.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 50
  • DOI: 10.1073/pnas.1811396115

Electroreduction of Carbon Dioxide to Formate by Homogeneous Ir Catalysts in Water
journal, October 2018


Thermodynamic Considerations for Optimizing Selective CO 2 Reduction by Molecular Catalysts
journal, March 2019


Hydricity of transition-metal hydrides and its role in CO2 reduction
journal, January 2000


Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation
journal, December 2009

  • Rakowski Dubois, M.; Dubois, Daniel L.
  • Accounts of Chemical Research, Vol. 42, Issue 12, p. 1974-1982
  • DOI: 10.1021/ar900110c

Thermodynamic Hydricity of Transition Metal Hydrides
journal, June 2016


CO 2 reduction or HCO 2 oxidation? Solvent-dependent thermochemistry of a nickel hydride complex
journal, January 2017

  • Ceballos, Bianca M.; Tsay, Charlene; Yang, Jenny Y.
  • Chemical Communications, Vol. 53, Issue 53
  • DOI: 10.1039/C7CC02511D

Solvation Effects on Transition Metal Hydricity
journal, November 2015

  • Tsay, Charlene; Livesay, Brooke N.; Ruelas, Samantha
  • Journal of the American Chemical Society, Vol. 137, Issue 44
  • DOI: 10.1021/jacs.5b07777

Relative Hydride, Proton, and Hydrogen Atom Transfer Abilities of [HM(diphosphine) 2 ]PF 6 Complexes (M = Pt, Ni)
journal, December 1999

  • Berning, Douglas E.; Noll, Bruce C.; DuBois, Daniel L.
  • Journal of the American Chemical Society, Vol. 121, Issue 49
  • DOI: 10.1021/ja991888y

Measurement of the Hydride Donor Abilities of [HM(diphosphine) 2 ] + Complexes (M = Ni, Pt) by Heterolytic Activation of Hydrogen
journal, March 2002

  • Curtis, Calvin J.; Miedaner, Alex; Ellis, William W.
  • Journal of the American Chemical Society, Vol. 124, Issue 9
  • DOI: 10.1021/ja0116829

Hydricity of Transition-Metal Hydrides: Thermodynamic Considerations for CO 2 Reduction
journal, January 2018


Determining the Overpotential for a Molecular Electrocatalyst
journal, December 2013

  • Appel, Aaron M.; Helm, Monte L.
  • ACS Catalysis, Vol. 4, Issue 2
  • DOI: 10.1021/cs401013v

The kinetics and mechanism of the organo-iridium-catalysed enantioselective reduction of imines
journal, January 2016

  • Stirling, Matthew J.; Sweeney, Gemma; MacRory, Kerry
  • Organic & Biomolecular Chemistry, Vol. 14, Issue 14
  • DOI: 10.1039/C6OB00245E

H 2 Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation
journal, November 2010

  • Fourmond, Vincent; Jacques, Pierre-André; Fontecave, Marc
  • Inorganic Chemistry, Vol. 49, Issue 22
  • DOI: 10.1021/ic101187v

Direct Determination of Equilibrium Potentials for Hydrogen Oxidation/Production by Open Circuit Potential Measurements in Acetonitrile
journal, June 2012

  • Roberts, John A. S.; Bullock, R. Morris
  • Inorganic Chemistry, Vol. 52, Issue 7
  • DOI: 10.1021/ic302461q

Electrocatalytic Hydrogen Evolution under Acidic Aqueous Conditions and Mechanistic Studies of a Highly Stable Molecular Catalyst
journal, July 2016

  • Tsay, Charlene; Yang, Jenny Y.
  • Journal of the American Chemical Society, Vol. 138, Issue 43
  • DOI: 10.1021/jacs.6b05851

pH-Dependent Reactivity of a Water-Soluble Nickel Complex: Hydrogen Evolution vs Selective Electrochemical Hydride Generation
journal, October 2018


Understanding and Tuning the Catalytic Bias of Hydrogenase
journal, May 2012

  • Hamdan, Abbas Abou; Dementin, Sébastien; Liebgott, Pierre-Pol
  • Journal of the American Chemical Society, Vol. 134, Issue 23
  • DOI: 10.1021/ja305217j