skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Directing the reactivity of metal hydrides for selective CO 2 reduction

Abstract

A critical challenge in electrocatalytic CO 2 reduction to renewable fuels is product selectivity. Desirable products of CO 2 reduction require proton equivalents, but key catalytic intermediates can also be competent for direct proton reduction to H 2 . Understanding how to manage divergent reaction pathways at these shared intermediates is essential to achieving high selectivity. Both proton reduction to hydrogen and CO 2 reduction to formate generally proceed through a metal hydride intermediate. We apply thermodynamic relationships that describe the reactivity of metal hydrides with H + and CO 2 to generate a thermodynamic product diagram, which outlines the free energy of product formation as a function of proton activity and hydricity (∆G H− ), or hydride donor strength. The diagram outlines a region of metal hydricity and proton activity in which CO 2 reduction is favorable and H + reduction is suppressed. We apply our diagram to inform our selection of [Pt(dmpe) 2 ](PF 6 ) 2 as a potential catalyst, because the corresponding hydride [HPt(dmpe) 2 ] + has the correct hydricity to access the region where selective CO 2 reduction is possible. We validate our choice experimentally; [Pt(dmpe) 2 ](PF 6 ) 2 is a highlymore » selective electrocatalyst for CO 2 reduction to formate (>90% Faradaic efficiency) at an overpotential of less than 100 mV in acetonitrile with no evidence of catalyst degradation after electrolysis. Our report of a selective catalyst for CO 2 reduction illustrates how our thermodynamic diagrams can guide selective and efficient catalyst discovery.« less

Authors:
; ORCiD logo
Publication Date:
Research Org.:
Univ. of California, Irvine, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
OSTI Identifier:
1483024
Alternate Identifier(s):
OSTI ID: 1611736
Grant/Contract Number:  
SC0012150; 1321846
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 115 Journal Issue: 50; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; electrocatalysis; CO2 reduction; solar fuel; formate production; hydride

Citation Formats

Ceballos, Bianca M., and Yang, Jenny Y. Directing the reactivity of metal hydrides for selective CO 2 reduction. United States: N. p., 2018. Web. doi:10.1073/pnas.1811396115.
Ceballos, Bianca M., & Yang, Jenny Y. Directing the reactivity of metal hydrides for selective CO 2 reduction. United States. doi:10.1073/pnas.1811396115.
Ceballos, Bianca M., and Yang, Jenny Y. Wed . "Directing the reactivity of metal hydrides for selective CO 2 reduction". United States. doi:10.1073/pnas.1811396115.
@article{osti_1483024,
title = {Directing the reactivity of metal hydrides for selective CO 2 reduction},
author = {Ceballos, Bianca M. and Yang, Jenny Y.},
abstractNote = {A critical challenge in electrocatalytic CO 2 reduction to renewable fuels is product selectivity. Desirable products of CO 2 reduction require proton equivalents, but key catalytic intermediates can also be competent for direct proton reduction to H 2 . Understanding how to manage divergent reaction pathways at these shared intermediates is essential to achieving high selectivity. Both proton reduction to hydrogen and CO 2 reduction to formate generally proceed through a metal hydride intermediate. We apply thermodynamic relationships that describe the reactivity of metal hydrides with H + and CO 2 to generate a thermodynamic product diagram, which outlines the free energy of product formation as a function of proton activity and hydricity (∆G H− ), or hydride donor strength. The diagram outlines a region of metal hydricity and proton activity in which CO 2 reduction is favorable and H + reduction is suppressed. We apply our diagram to inform our selection of [Pt(dmpe) 2 ](PF 6 ) 2 as a potential catalyst, because the corresponding hydride [HPt(dmpe) 2 ] + has the correct hydricity to access the region where selective CO 2 reduction is possible. We validate our choice experimentally; [Pt(dmpe) 2 ](PF 6 ) 2 is a highly selective electrocatalyst for CO 2 reduction to formate (>90% Faradaic efficiency) at an overpotential of less than 100 mV in acetonitrile with no evidence of catalyst degradation after electrolysis. Our report of a selective catalyst for CO 2 reduction illustrates how our thermodynamic diagrams can guide selective and efficient catalyst discovery.},
doi = {10.1073/pnas.1811396115},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 50,
volume = 115,
place = {United States},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1073/pnas.1811396115

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Kinetic Analysis of Competitive Electrocatalytic Pathways: New Insights into Hydrogen Production with Nickel Electrocatalysts
journal, January 2016

  • Wiedner, Eric S.; Brown, Houston J. S.; Helm, Monte L.
  • Journal of the American Chemical Society, Vol. 138, Issue 2
  • DOI: 10.1021/jacs.5b10853

Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 p K a Units:  Unification of Different Basicity Scales
journal, February 2005

  • Kaljurand, Ivari; Kütt, Agnes; Sooväli, Lilli
  • The Journal of Organic Chemistry, Vol. 70, Issue 3
  • DOI: 10.1021/jo048252w

Theoretical studies of the mechanism of catalytic hydrogen production by a cobaloxime
journal, January 2011

  • Muckerman, James T.; Fujita, Etsuko
  • Chemical Communications, Vol. 47, Issue 46
  • DOI: 10.1039/c1cc15330g

A Molecular Copper Catalyst for Hydrogenation of CO 2 to Formate
journal, August 2015


Electrocatalytic pathways towards sustainable fuel production from water and CO2
journal, November 2012

  • Inglis, Jane L.; MacLean, Brian J.; Pryce, Mary T.
  • Coordination Chemistry Reviews, Vol. 256, Issue 21-22
  • DOI: 10.1016/j.ccr.2012.05.002

Thermodynamic and Kinetic Hydricity of Ruthenium(II) Hydride Complexes
journal, September 2012

  • Matsubara, Yasuo; Fujita, Etsuko; Doherty, Mark D.
  • Journal of the American Chemical Society, Vol. 134, Issue 38
  • DOI: 10.1021/ja302937q

Fast and efficient molecular electrocatalysts for H 2 production: Using hydrogenase enzymes as guides
journal, January 2011

  • Yang, Jenny Y.; Bullock, R. Morris; DuBois, M. Rakowski
  • MRS Bulletin, Vol. 36, Issue 1
  • DOI: 10.1557/mrs.2010.8

Incorporation of Pendant Bases into Rh(diphosphine) 2 Complexes: Synthesis, Thermodynamic Studies, And Catalytic CO 2 Hydrogenation Activity of [Rh(P 2 N 2 ) 2 ] + Complexes
journal, June 2015

  • Lilio, Alyssia M.; Reineke, Mark H.; Moore, Curtis E.
  • Journal of the American Chemical Society, Vol. 137, Issue 25
  • DOI: 10.1021/jacs.5b04291

Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
journal, April 2014

  • Li, Christina W.; Ciston, Jim; Kanan, Matthew W.
  • Nature, Vol. 508, Issue 7497
  • DOI: 10.1038/nature13249

Tuning of CO 2 Reduction Selectivity on Metal Electrocatalysts
journal, September 2017


Proton-coupled electron transfer kinetics for the hydrogen evolution reaction of hangman porphyrins
journal, January 2012

  • Roubelakis, Manolis M.; Bediako, D. Kwabena; Dogutan, Dilek K.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21123h

pH-Dependent Reactivity of a Water-Soluble Nickel Complex: Hydrogen Evolution vs Selective Electrochemical Hydride Generation
journal, October 2018


Molecular mechanisms of cobalt-catalyzed hydrogen evolution
journal, September 2012

  • Marinescu, S. C.; Winkler, J. R.; Gray, H. B.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 38
  • DOI: 10.1073/pnas.1213442109

Electrochemical reduction of protonated cyclopentadienylcobalt phosphine complexes
journal, July 1986


Relative Hydride, Proton, and Hydrogen Atom Transfer Abilities of [HM(diphosphine) 2 ]PF 6 Complexes (M = Pt, Ni)
journal, December 1999

  • Berning, Douglas E.; Noll, Bruce C.; DuBois, Daniel L.
  • Journal of the American Chemical Society, Vol. 121, Issue 49
  • DOI: 10.1021/ja991888y

Solvent-Dependent Thermochemistry of an Iridium/Ruthenium H 2 Evolution Catalyst
journal, November 2016


Hydrogen Generation by Hangman Metalloporphyrins
journal, June 2011

  • Lee, Chang Hoon; Dogutan, Dilek K.; Nocera, Daniel G.
  • Journal of the American Chemical Society, Vol. 133, Issue 23
  • DOI: 10.1021/ja202136y

A Cobalt-Based Catalyst for the Hydrogenation of CO 2 under Ambient Conditions
journal, July 2013

  • Jeletic, Matthew S.; Mock, Michael T.; Appel, Aaron M.
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja406601v

Pd-Catalyzed Electrohydrogenation of Carbon Dioxide to Formate: High Mass Activity at Low Overpotential and Identification of the Deactivation Pathway
journal, April 2015

  • Min, Xiaoquan; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 137, Issue 14
  • DOI: 10.1021/ja511890h

Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media
journal, June 2014

  • Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5017

Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO 2 -to-CO Electrochemical Conversion
journal, November 2015

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Accounts of Chemical Research, Vol. 48, Issue 12
  • DOI: 10.1021/acs.accounts.5b00262

Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins
journal, October 2014

  • Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 42
  • DOI: 10.1073/pnas.1414908111

Trends in the Catalytic Activity of Hydrogen Evolution during CO 2 Electroreduction on Transition Metals
journal, March 2018


[Ni(P Me 2 N Ph 2 ) 2 ](BF 4 ) 2 as an Electrocatalyst for H 2 Production
journal, March 2012

  • Wiese, Stefan; Kilgore, Uriah J.; DuBois, Daniel L.
  • ACS Catalysis, Vol. 2, Issue 5
  • DOI: 10.1021/cs300019h

A Comprehensive Self-Consistent Spectrophotometric Acidity Scale of Neutral Brønsted Acids in Acetonitrile
journal, March 2006

  • Kütt, Agnes; Leito, Ivo; Kaljurand, Ivari
  • The Journal of Organic Chemistry, Vol. 71, Issue 7
  • DOI: 10.1021/jo060031y

Bond energies in solution from electrode potentials and thermochemical cycles. A simplified and general approach
journal, May 1993

  • Wayner, Danial D. M.; Parker, Vernon D.
  • Accounts of Chemical Research, Vol. 26, Issue 5
  • DOI: 10.1021/ar00029a010

Thermodynamic Hydricity of Transition Metal Hydrides
journal, June 2016


[Ni(Et 2 PCH 2 NMeCH 2 PEt 2 ) 2 ] 2+ as a Functional Model for Hydrogenases
journal, January 2003

  • Curtis, Calvin J.; Miedaner, Alex; Ciancanelli, Rebecca
  • Inorganic Chemistry, Vol. 42, Issue 1
  • DOI: 10.1021/ic020610v

Direct Determination of Equilibrium Potentials for Hydrogen Oxidation/Production by Open Circuit Potential Measurements in Acetonitrile
journal, June 2012

  • Roberts, John A. S.; Bullock, R. Morris
  • Inorganic Chemistry, Vol. 52, Issue 7
  • DOI: 10.1021/ic302461q

Hydrogen Evolution from Water under Aerobic Conditions Catalyzed by a Cobalt ATCUN Metallopeptide
journal, January 2016


Reaction Pathways of Hydrogen-Evolving Electrocatalysts: Electrochemical and Spectroscopic Studies of Proton-Coupled Electron Transfer Processes
journal, May 2016


Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes
journal, June 2017


Molecular Cobalt Complexes with Pendant Amines for Selective Electrocatalytic Reduction of Carbon Dioxide to Formic Acid
journal, March 2017

  • Roy, Souvik; Sharma, Bhaskar; Pécaut, Jacques
  • Journal of the American Chemical Society, Vol. 139, Issue 10
  • DOI: 10.1021/jacs.6b11474

Achieving Reversible H 2 /H + Interconversion at Room Temperature with Enzyme-Inspired Molecular Complexes: A Mechanistic Study
journal, August 2016


Earth-abundant hydrogen evolution electrocatalysts
journal, January 2014

  • McKone, James R.; Marinescu, Smaranda C.; Brunschwig, Bruce S.
  • Chem. Sci., Vol. 5, Issue 3
  • DOI: 10.1039/C3SC51711J

Iron Complexes Bearing Diphosphine Ligands with Positioned Pendant Amines as Electrocatalysts for the Oxidation of H 2
journal, May 2015

  • Liu, Tianbiao; Liao, Qian; O’Hagan, Molly
  • Organometallics, Vol. 34, Issue 12
  • DOI: 10.1021/om501289f

Light-Driven Hydrogen Production from Aqueous Protons using Molybdenum Catalysts
journal, August 2014

  • Eckenhoff, William T.; Brennessel, William W.; Eisenberg, Richard
  • Inorganic Chemistry, Vol. 53, Issue 18
  • DOI: 10.1021/ic501440a

Kinetics of Electron Transfer Reactions of H 2 -Evolving Cobalt Diglyoxime Catalysts
journal, January 2010

  • Dempsey, Jillian L.; Winkler, Jay R.; Gray, Harry B.
  • Journal of the American Chemical Society, Vol. 132, Issue 3
  • DOI: 10.1021/ja9080259

Theoretical Analysis of Cobalt Hangman Porphyrins: Ligand Dearomatization and Mechanistic Implications for Hydrogen Evolution
journal, November 2014

  • Solis, Brian H.; Maher, Andrew G.; Honda, Tatsuhiko
  • ACS Catalysis, Vol. 4, Issue 12
  • DOI: 10.1021/cs501454y

Electrocatalytic Hydrogen Evolution under Acidic Aqueous Conditions and Mechanistic Studies of a Highly Stable Molecular Catalyst
journal, July 2016

  • Tsay, Charlene; Yang, Jenny Y.
  • Journal of the American Chemical Society, Vol. 138, Issue 43
  • DOI: 10.1021/jacs.6b05851

Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate
journal, January 2014

  • Zhang, Sheng; Kang, Peng; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 136, Issue 5
  • DOI: 10.1021/ja4113885

Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions
journal, January 2013

  • Thoi, V. Sara; Sun, Yujie; Long, Jeffrey R.
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35272A

Substituent Effects on Cobalt Diglyoxime Catalysts for Hydrogen Evolution
journal, November 2011

  • Solis, Brian H.; Hammes-Schiffer, Sharon
  • Journal of the American Chemical Society, Vol. 133, Issue 47
  • DOI: 10.1021/ja208091e

Calculation of thermodynamic hydricities and the design of hydride donors for CO2 reduction
journal, July 2012

  • Muckerman, J. T.; Achord, P.; Creutz, C.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1201026109

Selective increase in CO 2 electroreduction activity at grain-boundary surface terminations
journal, November 2017


Electroreduction of carbon dioxide on palladium electrodes at potentials higher than the reversible hydrogen potential
journal, August 1994

  • Podlovchenko, B. I.; Kolyadko, E. A.; Lu, Shigan
  • Journal of Electroanalytical Chemistry, Vol. 373, Issue 1-2, p. 185-187
  • DOI: 10.1016/0022-0728(94)03324-2

Renewable Formate from C–H Bond Formation with CO 2 : Using Iron Carbonyl Clusters as Electrocatalysts
journal, August 2017

  • Loewen, Natalia D.; Neelakantan, Taruna V.; Berben, Louise A.
  • Accounts of Chemical Research, Vol. 50, Issue 9
  • DOI: 10.1021/acs.accounts.7b00302

Selectivity for HCO 2 over H 2 in the Electrochemical Catalytic Reduction of CO 2 by (POCOP)IrH 2
journal, August 2016

  • Johnson, Samantha I.; Nielsen, Robert J.; Goddard, William A.
  • ACS Catalysis, Vol. 6, Issue 10
  • DOI: 10.1021/acscatal.6b01755

Hydricity of Transition-Metal Hydrides: Thermodynamic Considerations for CO 2 Reduction
journal, January 2018


Cobalt Complexes Containing Pendant Amines in the Second Coordination Sphere as Electrocatalysts for H 2 Production
journal, June 2014

  • Fang, Ming; Wiedner, Eric S.; Dougherty, William G.
  • Organometallics, Vol. 33, Issue 20
  • DOI: 10.1021/om5004607

An Iron Electrocatalyst for Selective Reduction of CO 2 to Formate in Water: Including Thermochemical Insights
journal, November 2015


Measurement of the Hydride Donor Abilities of [HM(diphosphine) 2 ] + Complexes (M = Ni, Pt) by Heterolytic Activation of Hydrogen
journal, March 2002

  • Curtis, Calvin J.; Miedaner, Alex; Ellis, William W.
  • Journal of the American Chemical Society, Vol. 124, Issue 9
  • DOI: 10.1021/ja0116829

Determining the Overpotential for a Molecular Electrocatalyst
journal, December 2013

  • Appel, Aaron M.; Helm, Monte L.
  • ACS Catalysis, Vol. 4, Issue 2
  • DOI: 10.1021/cs401013v

Controlling H + vs CO 2 Reduction Selectivity on Pb Electrodes
journal, November 2014

  • Lee, Chang Hoon; Kanan, Matthew W.
  • ACS Catalysis, Vol. 5, Issue 1
  • DOI: 10.1021/cs5017672

Proton Electroreduction Catalyzed by Cobaloximes:  Functional Models for Hydrogenases
journal, June 2005

  • Razavet, Mathieu; Artero, Vincent; Fontecave, Marc
  • Inorganic Chemistry, Vol. 44, Issue 13
  • DOI: 10.1021/ic050167z

An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen
journal, February 2013

  • Liu, Tianbiao; DuBois, Daniel L.; Bullock, R. Morris
  • Nature Chemistry, Vol. 5, Issue 3
  • DOI: 10.1038/nchem.1571

Metal–Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen
journal, June 2015


Theoretical Analysis of Mechanistic Pathways for Hydrogen Evolution Catalyzed by Cobaloximes
journal, November 2011

  • Solis, Brian H.; Hammes-Schiffer, Sharon
  • Inorganic Chemistry, Vol. 50, Issue 21
  • DOI: 10.1021/ic201842v

Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO 2 reduction by cobalt–terpyridine complexes
journal, January 2015

  • Elgrishi, Noémie; Chambers, Matthew B.; Fontecave, Marc
  • Chemical Science, Vol. 6, Issue 4
  • DOI: 10.1039/C4SC03766A

Electrocatalytic Oxidation of Formate by [Ni(P R 2 N R′ 2 ) 2 (CH 3 CN)] 2+ Complexes
journal, August 2011

  • Galan, Brandon R.; Schöffel, Julia; Linehan, John C.
  • Journal of the American Chemical Society, Vol. 133, Issue 32
  • DOI: 10.1021/ja204489e

The kinetics and mechanism of the organo-iridium-catalysed enantioselective reduction of imines
journal, January 2016

  • Stirling, Matthew J.; Sweeney, Gemma; MacRory, Kerry
  • Organic & Biomolecular Chemistry, Vol. 14, Issue 14
  • DOI: 10.1039/C6OB00245E

Selective Electrocatalytic Reduction of CO 2 to Formate by Water-Stable Iridium Dihydride Pincer Complexes
journal, March 2012

  • Kang, Peng; Cheng, Chen; Chen, Zuofeng
  • Journal of the American Chemical Society, Vol. 134, Issue 12
  • DOI: 10.1021/ja300543s

CO 2 reduction or HCO 2 oxidation? Solvent-dependent thermochemistry of a nickel hydride complex
journal, January 2017

  • Ceballos, Bianca M.; Tsay, Charlene; Yang, Jenny Y.
  • Chemical Communications, Vol. 53, Issue 53
  • DOI: 10.1039/C7CC02511D

On the Basicity of Conjugated Nitrogen Heterocycles in Different Media: On the Basicity of Conjugated Nitrogen Heterocycles in Different Media
journal, August 2017

  • Lõkov, Märt; Tshepelevitsh, Sofja; Heering, Agnes
  • European Journal of Organic Chemistry, Vol. 2017, Issue 30
  • DOI: 10.1002/ejoc.201700749

A Bioinspired Nickel(bis-dithiolene) Complex as a Homogeneous Catalyst for Carbon Dioxide Electroreduction
journal, January 2018

  • Fogeron, Thibault; Todorova, Tanya K.; Porcher, Jean-Philippe
  • ACS Catalysis, Vol. 8, Issue 3
  • DOI: 10.1021/acscatal.7b03383

A Computational Study of the Mechanism of Hydrogen Evolution by Cobalt(Diimine-Dioxime) Catalysts
journal, September 2013

  • Bhattacharjee, Anirban; Andreiadis, Eugen S.; Chavarot-Kerlidou, Murielle
  • Chemistry - A European Journal, Vol. 19, Issue 45
  • DOI: 10.1002/chem.201301860

Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays
journal, January 2006

  • Wilson, Aaron D.; Newell, Rachel H.; McNevin, Michael J.
  • Journal of the American Chemical Society, Vol. 128, Issue 1
  • DOI: 10.1021/ja056442y

Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic
journal, February 2012

  • Smith, Stuart E.; Yang, Jenny Y.; DuBois, Daniel L.
  • Angewandte Chemie International Edition, Vol. 51, Issue 13, p. 3152-3155
  • DOI: 10.1002/anie.201108461

Electrochemical Detection of Transient Cobalt Hydride Intermediates of Electrocatalytic Hydrogen Production
journal, June 2016

  • Wiedner, Eric S.; Bullock, R. Morris
  • Journal of the American Chemical Society, Vol. 138, Issue 26
  • DOI: 10.1021/jacs.6b04779

Hydricity of transition-metal hydrides and its role in CO2 reduction
journal, January 2000


Rapid Transfer of Hydride Ion from a Ruthenium Complex to C 1 Species in Water
journal, August 2007

  • Creutz, Carol; Chou, Mei H.
  • Journal of the American Chemical Society, Vol. 129, Issue 33
  • DOI: 10.1021/ja074158w

Hydrogenation of CO 2 in Water Using a Bis(diphosphine) Ni–H Complex
journal, March 2017

  • Burgess, Samantha A.; Kendall, Alexander J.; Tyler, David R.
  • ACS Catalysis, Vol. 7, Issue 4
  • DOI: 10.1021/acscatal.7b00350

Aqueous Hydricity from Calculations of Reduction Potential and Acidity in Water
journal, December 2016

  • Brereton, Kelsey R.; Bellows, Sarina M.; Fallah, Hengameh
  • The Journal of Physical Chemistry B, Vol. 120, Issue 50
  • DOI: 10.1021/acs.jpcb.6b09864

Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant tert-butyl amines
journal, January 2010

  • Yang, Jenny Y.; Chen, Shentan; Dougherty, William G.
  • Chemical Communications, Vol. 46, Issue 45
  • DOI: 10.1039/c0cc03246h

Prediction of acidity in acetonitrile solution with COSMO-RS
journal, April 2009

  • Eckert, Frank; Leito, Ivo; Kaljurand, Ivari
  • Journal of Computational Chemistry, Vol. 30, Issue 5
  • DOI: 10.1002/jcc.21103

Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium
journal, February 2016

  • Pitman, Catherine L.; Brereton, Kelsey R.; Miller, Alexander J. M.
  • Journal of the American Chemical Society, Vol. 138, Issue 7
  • DOI: 10.1021/jacs.5b12363

Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics
journal, October 2017

  • Burgess, Samantha A.; Appel, Aaron M.; Linehan, John C.
  • Angewandte Chemie International Edition, Vol. 56, Issue 47
  • DOI: 10.1002/anie.201709319

Highly efficient electrocatalytic hydrogen evolution from neutral aqueous solution by a water-soluble anionic cobalt( ii ) porphyrin
journal, January 2015

  • Beyene, Belete B.; Mane, Sandeep B.; Hung, Chen-Hsiung
  • Chemical Communications, Vol. 51, Issue 81
  • DOI: 10.1039/C5CC05582B

A Bimetallic Nickel–Gallium Complex Catalyzes CO 2 Hydrogenation via the Intermediacy of an Anionic d 10 Nickel Hydride
journal, September 2017

  • Cammarota, Ryan C.; Vollmer, Matthew V.; Xie, Jing
  • Journal of the American Chemical Society, Vol. 139, Issue 40
  • DOI: 10.1021/jacs.7b07911

Molecular Catalysis of H 2 Evolution: Diagnosing Heterolytic versus Homolytic Pathways
journal, September 2014

  • Costentin, Cyrille; Dridi, Hachem; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 136, Issue 39
  • DOI: 10.1021/ja505845t

Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation
journal, December 2009

  • Rakowski Dubois, M.; Dubois, Daniel L.
  • Accounts of Chemical Research, Vol. 42, Issue 12, p. 1974-1982
  • DOI: 10.1021/ar900110c

Tailoring Electrocatalysts for Selective CO 2 or H + Reduction: Iron Carbonyl Clusters as a Case Study
journal, November 2015


Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems.
journal, April 1964

  • Nicholson, R. S.; Shain, Irving
  • Analytical Chemistry, Vol. 36, Issue 4, p. 706-723
  • DOI: 10.1021/ac60210a007

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Predicting the reactivity of hydride donors in water: thermodynamic constants for hydrogen
journal, January 2015

  • Connelly, Samantha J.; Wiedner, Eric S.; Appel, Aaron M.
  • Dalton Transactions, Vol. 44, Issue 13
  • DOI: 10.1039/C4DT03841J

Solvation Effects on Transition Metal Hydricity
journal, November 2015

  • Tsay, Charlene; Livesay, Brooke N.; Ruelas, Samantha
  • Journal of the American Chemical Society, Vol. 137, Issue 44
  • DOI: 10.1021/jacs.5b07777