DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Organic Counteranion Co-assembly Strategy for the Formation of γ-Cyclodextrin-Containing Hybrid Frameworks

Abstract

Here, a class of γ-cyclodextrin-containing hybrid frameworks (CD-HFs) has been synthesized, employing γ-cyclodextrin (γ-CD) as the primary building blocks, along with 4-methoxysalicylate (4-MS) anions as the secondary building blocks. CD-HFs are constructed through the synergistic exploitation of coordinative, electrostatic, and dispersive forces. The syntheses have been carried out using an organic counteranion co-assembly strategy, which allows for the introduction of 4-MS, in place of inorganic OH, into the cationic γ-CD-containing metal–organic frameworks (CD-MOFs). Although the packing arrangement of the γ-CD tori in the solid-state superstructure of CD-HFs is identical to that of the previously reported CD-MOFs, CD-HFs crystallize with lower symmetry and in the cuboid space group P43212—when compared to CD-MOF-1, which has the cubic unit cell of I432 space group—on account of the chiral packing of the 4-MS anions in the CD-HF superstructures. Importantly, CD-HFs have ultramicroporous apertures associated with the pore channels, a significant deviation from CD-MOF-1, as a consequence of the contribution from the 4-MS anions, which serve as supramolecular baffles. In gas adsorption–desorption experiments, CD-HF-1 exhibits a Brunauer–Emmett–Teller (BET) surface area of 306 m2 g–1 for CO2 at 195 K, yet does not uptake N2 at 77 K, confirming the difference in porosity between CD-HF-1 andmore » CD-MOF-1. Additionally, the 4-MS anions in CD-HF-1 can be exchanged with OH anions, leading to an irreversible single-crystal to single-crystal transformation, with rearrangement of coordinated metal ions. Reversible transformations were also observed in CD-MOF-1 when OH ions were exchanged for 4-MS anions, with the space group changing from I432 to R32. This organic counteranion co-assembly strategy opens up new routes for the construction of hybrid frameworks, which are inaccessible by existing de novo MOF assembly methodologies.« less

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5];  [6]; ORCiD logo [1]; ORCiD logo [7]
  1. Northwestern Univ., Evanston, IL (United States)
  2. Fudan Univ., Shanghai (China)
  3. Westlake Univ., Hangzhou (China)
  4. Tianjin Univ. (China)
  5. Jilin Univ., Changchun (China)
  6. Joint Center of Excellence in Integrated Nanosystems, King Abdulaziz City for Science and Technology, Riyadh 11442, Kingdom of Saudi Arabia
  7. Northwestern Univ., Evanston, IL (United States); Tianjin Univ. (China); Univ. of New South Wales, Sydney, NSW (Australia)
Publication Date:
Research Org.:
Univ. of Notre Dame, IN (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); National Natural Science Foundation of China (NSFC); National Basic Research Program of China
OSTI Identifier:
1597703
Grant/Contract Number:  
NA0003763
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 142; Journal Issue: 4; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; Crystals; Superstructures; Anions; Oligomers Ions

Citation Formats

Shen, Dengke, Cooper, James A., Li, Peng, Guo, Qing-Hui, Cai, Kang, Wang, Xingjie, Wu, Huang, Chen, Hongliang, Zhang, Long, Jiao, Yang, Qiu, Yunyan, Stern, Charlotte L., Liu, Zhichang, Sue, Andrew C. -H., Yang, Ying-Wei, Alsubaie, Fehaid M., Farha, Omar K., and Stoddart, J. Fraser. Organic Counteranion Co-assembly Strategy for the Formation of γ-Cyclodextrin-Containing Hybrid Frameworks. United States: N. p., 2020. Web. doi:10.1021/jacs.9b12527.
Shen, Dengke, Cooper, James A., Li, Peng, Guo, Qing-Hui, Cai, Kang, Wang, Xingjie, Wu, Huang, Chen, Hongliang, Zhang, Long, Jiao, Yang, Qiu, Yunyan, Stern, Charlotte L., Liu, Zhichang, Sue, Andrew C. -H., Yang, Ying-Wei, Alsubaie, Fehaid M., Farha, Omar K., & Stoddart, J. Fraser. Organic Counteranion Co-assembly Strategy for the Formation of γ-Cyclodextrin-Containing Hybrid Frameworks. United States. https://doi.org/10.1021/jacs.9b12527
Shen, Dengke, Cooper, James A., Li, Peng, Guo, Qing-Hui, Cai, Kang, Wang, Xingjie, Wu, Huang, Chen, Hongliang, Zhang, Long, Jiao, Yang, Qiu, Yunyan, Stern, Charlotte L., Liu, Zhichang, Sue, Andrew C. -H., Yang, Ying-Wei, Alsubaie, Fehaid M., Farha, Omar K., and Stoddart, J. Fraser. Tue . "Organic Counteranion Co-assembly Strategy for the Formation of γ-Cyclodextrin-Containing Hybrid Frameworks". United States. https://doi.org/10.1021/jacs.9b12527. https://www.osti.gov/servlets/purl/1597703.
@article{osti_1597703,
title = {Organic Counteranion Co-assembly Strategy for the Formation of γ-Cyclodextrin-Containing Hybrid Frameworks},
author = {Shen, Dengke and Cooper, James A. and Li, Peng and Guo, Qing-Hui and Cai, Kang and Wang, Xingjie and Wu, Huang and Chen, Hongliang and Zhang, Long and Jiao, Yang and Qiu, Yunyan and Stern, Charlotte L. and Liu, Zhichang and Sue, Andrew C. -H. and Yang, Ying-Wei and Alsubaie, Fehaid M. and Farha, Omar K. and Stoddart, J. Fraser},
abstractNote = {Here, a class of γ-cyclodextrin-containing hybrid frameworks (CD-HFs) has been synthesized, employing γ-cyclodextrin (γ-CD) as the primary building blocks, along with 4-methoxysalicylate (4-MS–) anions as the secondary building blocks. CD-HFs are constructed through the synergistic exploitation of coordinative, electrostatic, and dispersive forces. The syntheses have been carried out using an organic counteranion co-assembly strategy, which allows for the introduction of 4-MS–, in place of inorganic OH–, into the cationic γ-CD-containing metal–organic frameworks (CD-MOFs). Although the packing arrangement of the γ-CD tori in the solid-state superstructure of CD-HFs is identical to that of the previously reported CD-MOFs, CD-HFs crystallize with lower symmetry and in the cuboid space group P43212—when compared to CD-MOF-1, which has the cubic unit cell of I432 space group—on account of the chiral packing of the 4-MS– anions in the CD-HF superstructures. Importantly, CD-HFs have ultramicroporous apertures associated with the pore channels, a significant deviation from CD-MOF-1, as a consequence of the contribution from the 4-MS– anions, which serve as supramolecular baffles. In gas adsorption–desorption experiments, CD-HF-1 exhibits a Brunauer–Emmett–Teller (BET) surface area of 306 m2 g–1 for CO2 at 195 K, yet does not uptake N2 at 77 K, confirming the difference in porosity between CD-HF-1 and CD-MOF-1. Additionally, the 4-MS– anions in CD-HF-1 can be exchanged with OH– anions, leading to an irreversible single-crystal to single-crystal transformation, with rearrangement of coordinated metal ions. Reversible transformations were also observed in CD-MOF-1 when OH– ions were exchanged for 4-MS– anions, with the space group changing from I432 to R32. This organic counteranion co-assembly strategy opens up new routes for the construction of hybrid frameworks, which are inaccessible by existing de novo MOF assembly methodologies.},
doi = {10.1021/jacs.9b12527},
journal = {Journal of the American Chemical Society},
number = 4,
volume = 142,
place = {United States},
year = {Tue Jan 14 00:00:00 EST 2020},
month = {Tue Jan 14 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Xenon Gas Separation and Storage Using Metal-Organic Frameworks
journal, March 2018


Supramolecular systems chemistry
journal, February 2015


The utility of the template effect in metal-organic frameworks
journal, July 2019


Colloidal-Sized Metal–Organic Frameworks: Synthesis and Applications
journal, December 2013

  • Sindoro, Melinda; Yanai, Nobuhiro; Jee, Ah-Young
  • Accounts of Chemical Research, Vol. 47, Issue 2
  • DOI: 10.1021/ar400151n

Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers
journal, January 2014

  • Zhang, Jie-Peng; Liao, Pei-Qin; Zhou, Hao-Long
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00129J

Enzyme–MOF (metal–organic framework) composites
journal, January 2017

  • Lian, Xizhen; Fang, Yu; Joseph, Elizabeth
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C7CS00058H

In Situ Observation of Successive Crystallizations and Metastable Intermediates in the Formation of Metal-Organic Frameworks
journal, January 2016

  • Yeung, Hamish H. -M.; Wu, Yue; Henke, Sebastian
  • Angewandte Chemie International Edition, Vol. 55, Issue 6
  • DOI: 10.1002/anie.201508763

Coordination change, lability and hemilability in metal–organic frameworks
journal, January 2017

  • Morris, Russell E.; Brammer, Lee
  • Chemical Society Reviews, Vol. 46, Issue 17
  • DOI: 10.1039/C7CS00187H

Barely porous organic cages for hydrogen isotope separation
journal, October 2019


The role of the counter-ion in metal-organic frameworks’ chemistry and applications
journal, December 2018


A Cooperative Pillar-Template Strategy as a Generalized Synthetic Method for Flexible Homochiral Porous Frameworks
journal, March 2018

  • Jin, Jing; Zhao, Xiang; Feng, Pingyun
  • Angewandte Chemie International Edition, Vol. 57, Issue 14
  • DOI: 10.1002/anie.201801116

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Chemical control of structure and guest uptake by a conformationally mobile porous material
journal, January 2019

  • Katsoulidis, Alexandros P.; Antypov, Dmytro; Whitehead, George F. S.
  • Nature, Vol. 565, Issue 7738
  • DOI: 10.1038/s41586-018-0820-9

Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: Study of morphology and chemical composition of individual particles
journal, October 2017


Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery
journal, October 2011

  • Della Rocca, Joseph; Liu, Demin; Lin, Wenbin
  • Accounts of Chemical Research, Vol. 44, Issue 10, p. 957-968
  • DOI: 10.1021/ar200028a

A flexible interpenetrating coordination framework with a bimodal porous functionality
journal, January 2007

  • Maji, Tapas Kumar; Matsuda, Ryotaro; Kitagawa, Susumu
  • Nature Materials, Vol. 6, Issue 2
  • DOI: 10.1038/nmat1827

Controlling flexibility of metal–organic frameworks
journal, October 2017

  • Zhang, Jie-Peng; Zhou, Hao-Long; Zhou, Dong-Dong
  • National Science Review, Vol. 5, Issue 6
  • DOI: 10.1093/nsr/nwx127

Encapsulation of Ibuprofen in CD-MOF and Related Bioavailability Studies
journal, April 2017


Nanoporous Carbohydrate Metal–Organic Frameworks
journal, December 2011

  • Forgan, Ross S.; Smaldone, Ronald A.; Gassensmith, Jeremiah J.
  • Journal of the American Chemical Society, Vol. 134, Issue 1
  • DOI: 10.1021/ja208224f

Noninvasive Substitution of K + Sites in Cyclodextrin Metal–Organic Frameworks by Li + Ions
journal, August 2017

  • Patel, Hasmukh A.; Islamoglu, Timur; Liu, Zhichang
  • Journal of the American Chemical Society, Vol. 139, Issue 32
  • DOI: 10.1021/jacs.7b06287

A Flexible Metal–Organic Framework with 4-Connected Zr 6 Nodes
journal, August 2018

  • Zhang, Yuanyuan; Zhang, Xuan; Lyu, Jiafei
  • Journal of the American Chemical Society, Vol. 140, Issue 36
  • DOI: 10.1021/jacs.8b06789

Lattice Expansion and Contraction in Metal-Organic Frameworks by Sequential Linker Reinstallation
journal, July 2019


Ligand exchanges and selective catalytic hydrogenation in molecular single crystals
journal, June 2010

  • Huang, Zheng; White, Peter S.; Brookhart, Maurice
  • Nature, Vol. 465, Issue 7298
  • DOI: 10.1038/nature09085

Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems
journal, May 2018


Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers
journal, January 2016

  • Scott, Hayley S.; Ogiwara, Naoki; Chen, Kai-Jie
  • Chemical Science, Vol. 7, Issue 8
  • DOI: 10.1039/C6SC01385F

A Metal-Organic Framework Stabilizes an Occluded Photocatalyst
journal, July 2013

  • Han, Shuangbing; Wei, Yanhu; Grzybowski, Bartosz A.
  • Chemistry - A European Journal, Vol. 19, Issue 34
  • DOI: 10.1002/chem.201302141

Hybrid Ultra-Microporous Materials for Selective Xenon Adsorption and Separation
journal, May 2016

  • Mohamed, Mona H.; Elsaidi, Sameh K.; Pham, Tony
  • Angewandte Chemie International Edition, Vol. 55, Issue 29
  • DOI: 10.1002/anie.201602287

Efficient CO 2 Removal for Ultra - Pure CO Production by Two Hybrid Ultramicroporous Materials
journal, February 2018

  • Chen, Kai-Jie; Yang, Qing-Yuan; Sen, Susan
  • Angewandte Chemie International Edition, Vol. 57, Issue 13
  • DOI: 10.1002/anie.201706090

Induction of chiral porous solids containing only achiral building blocks
journal, April 2010

  • Morris, Russell E.; Bu, Xianhui
  • Nature Chemistry, Vol. 2, Issue 5
  • DOI: 10.1038/nchem.628

Time-Resolved In Situ X-ray Diffraction Reveals Metal-Dependent Metal-Organic Framework Formation
journal, October 2016

  • Wu, Yue; Henke, Sebastian; Kieslich, Gregor
  • Angewandte Chemie International Edition, Vol. 55, Issue 45
  • DOI: 10.1002/anie.201608463

Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy
journal, March 2017


Core–Shell Structured Cyclodextrin Metal–Organic Frameworks with Hierarchical Dye Encapsulation for Tunable Light Emission
journal, February 2019


Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film
journal, March 2016

  • Sakaida, Shun; Otsubo, Kazuya; Sakata, Osami
  • Nature Chemistry, Vol. 8, Issue 4
  • DOI: 10.1038/nchem.2469

Globally homochiral assembly of two-dimensional molecular networks triggered by co-absorbers
journal, January 2013

  • Chen, Ting; Yang, Wen-Hong; Wang, Dong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2403

Metal–Organic Frameworks for Heterogeneous Basic Catalysis
journal, May 2017


Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity
journal, March 2017

  • Carrington, Elliot J.; McAnally, Craig A.; Fletcher, Ashleigh J.
  • Nature Chemistry, Vol. 9, Issue 9
  • DOI: 10.1038/nchem.2747

Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship
journal, January 2017

  • Adil, Karim; Belmabkhout, Youssef; Pillai, Renjith S.
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C7CS00153C

Structures of Metal–Organic Frameworks with Rod Secondary Building Units
journal, September 2016


Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene
journal, May 2016


Ionic metal-organic frameworks (iMOFs): Design principles and applications
journal, January 2016

  • Karmakar, Avishek; Desai, Aamod V.; Ghosh, Sujit K.
  • Coordination Chemistry Reviews, Vol. 307
  • DOI: 10.1016/j.ccr.2015.08.007

Benchmark C 2 H 2 /CO 2 and CO 2 /C 2 H 2 Separation by Two Closely Related Hybrid Ultramicroporous Materials
journal, November 2016


A Microporous Metal-Organic Framework Supramolecularly Assembled from a Cu II Dodecaborate Cluster Complex for Selective Gas Separation
journal, May 2019

  • Zhang, Yuanbin; Yang, Lifeng; Wang, Lingyao
  • Angewandte Chemie International Edition, Vol. 58, Issue 24
  • DOI: 10.1002/anie.201903600

Methane storage in flexible metal–organic frameworks with intrinsic thermal management
journal, October 2015

  • Mason, Jarad A.; Oktawiec, Julia; Taylor, Mercedes K.
  • Nature, Vol. 527, Issue 7578
  • DOI: 10.1038/nature15732

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Amorphous Metal–Organic Frameworks
journal, April 2014

  • Bennett, Thomas D.; Cheetham, Anthony K.
  • Accounts of Chemical Research, Vol. 47, Issue 5
  • DOI: 10.1021/ar5000314

Fine Tuning and Specific Binding Sites with a Porous Hydrogen-Bonded Metal-Complex Framework for Gas Selective Separations
journal, March 2018

  • Bao, Zongbi; Xie, Danyan; Chang, Ganggang
  • Journal of the American Chemical Society, Vol. 140, Issue 13
  • DOI: 10.1021/jacs.7b13706

Metal-Organic Frameworks from Edible Natural Products
journal, August 2010

  • Smaldone, Ronald A.; Forgan, Ross S.; Furukawa, Hiroyasu
  • Angewandte Chemie International Edition, Vol. 49, Issue 46, p. 8630-8634
  • DOI: 10.1002/anie.201002343

Epitaxial Growth of γ-Cyclodextrin-Containing Metal–Organic Frameworks Based on a Host–Guest Strategy
journal, August 2018

  • Shen, Dengke; Wang, Gang; Liu, Zhichang
  • Journal of the American Chemical Society, Vol. 140, Issue 36
  • DOI: 10.1021/jacs.8b06609

Soft porous crystals
journal, November 2009

  • Horike, Satoshi; Shimomura, Satoru; Kitagawa, Susumu
  • Nature Chemistry, Vol. 1, Issue 9, p. 695-704
  • DOI: 10.1038/nchem.444

Large-Pore Apertures in a Series of Metal-Organic Frameworks
journal, May 2012


Works referencing / citing this record:

A nonconventional host–guest cubic assembly based on γ-cyclodextrin and a Keggin-type polyoxometalate
journal, January 2020

  • Jiang, Zhan-Guo; Mao, Wei-Tao; Huang, Dan-Ping
  • Nanoscale, Vol. 12, Issue 18
  • DOI: 10.1039/d0nr00973c