DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Confined Interlayer Water Promotes Structural Stability for High-Rate Electrochemical Proton Intercalation in Tungsten Oxide Hydrates

Abstract

There is widespread interest in determining the structural features of redox-active electrochemical energy storage materials that enable simultaneous high power and high energy density. Here, we present the discovery that confined interlayer water in crystalline tungsten oxide hydrates, WO3·nH2O, enables highly reversible proton intercalation at subsecond time scales. By comparing the structural transformation kinetics and confined water dynamics of the hydrates with anhydrous WO3, we determine that the rapid electrochemical proton intercalation is due to the ability of the confined water layers to isolate structural transformations to two dimensions while stabilizing the structure along the third dimension. As a result, these water layers provide both structural flexibility and stability to accommodate intercalation-driven bonding changes. Furthermore, this provides an alternative explanation for the fast energy storage kinetics of materials that incorporate structural water and provides a new strategy for enabling high power and high energy density with redox-active layered materials containing confined fluids.

Authors:
 [1];  [2];  [1]; ORCiD logo [3];  [4];  [1];  [5]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [1]
  1. North Carolina State Univ., Raleigh, NC (United States)
  2. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Univ. of California, Riverside, CA (United States)
  5. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST); SLAC National Accelerator Lab., Menlo Park, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1595247
Alternate Identifier(s):
OSTI ID: 1649453
Grant/Contract Number:  
AC02-76SF00515; 1810194; 653827; AC05-00OR22725; ECCS-1542015
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 4; Journal Issue: 12; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Mitchell, James B., Geise, Natalie R., Paterson, Alisa R., Osti, Naresh C., Sun, Yangyunli, Fleischmann, Simon, Zhang, Rui, Madsen, Louis A., Toney, Michael F., Jiang, De-en, Kolesnikov, Alexander I., Mamontov, Eugene, and Augustyn, Veronica. Confined Interlayer Water Promotes Structural Stability for High-Rate Electrochemical Proton Intercalation in Tungsten Oxide Hydrates. United States: N. p., 2019. Web. doi:10.1021/acsenergylett.9b02040.
Mitchell, James B., Geise, Natalie R., Paterson, Alisa R., Osti, Naresh C., Sun, Yangyunli, Fleischmann, Simon, Zhang, Rui, Madsen, Louis A., Toney, Michael F., Jiang, De-en, Kolesnikov, Alexander I., Mamontov, Eugene, & Augustyn, Veronica. Confined Interlayer Water Promotes Structural Stability for High-Rate Electrochemical Proton Intercalation in Tungsten Oxide Hydrates. United States. https://doi.org/10.1021/acsenergylett.9b02040
Mitchell, James B., Geise, Natalie R., Paterson, Alisa R., Osti, Naresh C., Sun, Yangyunli, Fleischmann, Simon, Zhang, Rui, Madsen, Louis A., Toney, Michael F., Jiang, De-en, Kolesnikov, Alexander I., Mamontov, Eugene, and Augustyn, Veronica. Tue . "Confined Interlayer Water Promotes Structural Stability for High-Rate Electrochemical Proton Intercalation in Tungsten Oxide Hydrates". United States. https://doi.org/10.1021/acsenergylett.9b02040. https://www.osti.gov/servlets/purl/1595247.
@article{osti_1595247,
title = {Confined Interlayer Water Promotes Structural Stability for High-Rate Electrochemical Proton Intercalation in Tungsten Oxide Hydrates},
author = {Mitchell, James B. and Geise, Natalie R. and Paterson, Alisa R. and Osti, Naresh C. and Sun, Yangyunli and Fleischmann, Simon and Zhang, Rui and Madsen, Louis A. and Toney, Michael F. and Jiang, De-en and Kolesnikov, Alexander I. and Mamontov, Eugene and Augustyn, Veronica},
abstractNote = {There is widespread interest in determining the structural features of redox-active electrochemical energy storage materials that enable simultaneous high power and high energy density. Here, we present the discovery that confined interlayer water in crystalline tungsten oxide hydrates, WO3·nH2O, enables highly reversible proton intercalation at subsecond time scales. By comparing the structural transformation kinetics and confined water dynamics of the hydrates with anhydrous WO3, we determine that the rapid electrochemical proton intercalation is due to the ability of the confined water layers to isolate structural transformations to two dimensions while stabilizing the structure along the third dimension. As a result, these water layers provide both structural flexibility and stability to accommodate intercalation-driven bonding changes. Furthermore, this provides an alternative explanation for the fast energy storage kinetics of materials that incorporate structural water and provides a new strategy for enabling high power and high energy density with redox-active layered materials containing confined fluids.},
doi = {10.1021/acsenergylett.9b02040},
journal = {ACS Energy Letters},
number = 12,
volume = 4,
place = {United States},
year = {Tue Oct 29 00:00:00 EDT 2019},
month = {Tue Oct 29 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 54 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanomaterials for Rechargeable Lithium Batteries
journal, April 2008

  • Bruce, Peter G.; Scrosati, Bruno; Tarascon, Jean-Marie
  • Angewandte Chemie International Edition, Vol. 47, Issue 16, p. 2930-2946
  • DOI: 10.1002/anie.200702505

Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Nanostructured electrode materials for electrochemical energy storage and conversion
journal, January 2008

  • Manthiram, A.; Vadivel Murugan, A.; Sarkar, A.
  • Energy & Environmental Science, Vol. 1, Issue 6
  • DOI: 10.1039/b811802g

Enhancing Pseudocapacitive Charge Storage in Polymer Templated Mesoporous Materials
journal, June 2012

  • Rauda, Iris E.; Augustyn, Veronica; Dunn, Bruce
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300167h

Nanomaterials for Electrochemical Energy Storage: the Good and the Bad
journal, September 2016


High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
journal, April 2013

  • Augustyn, Veronica; Come, Jérémy; Lowe, Michael A.
  • Nature Materials, Vol. 12, Issue 6
  • DOI: 10.1038/nmat3601

Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x
journal, December 2016

  • Kim, Hyung-Seok; Cook, John B.; Lin, Hao
  • Nature Materials, Vol. 16, Issue 4
  • DOI: 10.1038/nmat4810

Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes
journal, June 2014

  • Mefford, J. Tyler; Hardin, William G.; Dai, Sheng
  • Nature Materials, Vol. 13, Issue 7
  • DOI: 10.1038/nmat4000

2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage
journal, November 2017


Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides
journal, July 2017


Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries
journal, January 2019


Full open-framework batteries for stationary energy storage
journal, January 2014

  • Pasta, Mauro; Wessells, Colin D.; Liu, Nian
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4007

Suppressed Activation Energy for Interfacial Charge Transfer of a Prussian Blue Analog Thin Film Electrode with Hydrated Ions (Li + , Na + , and Mg 2+ )
journal, May 2013

  • Mizuno, Yoshifumi; Okubo, Masashi; Hosono, Eiji
  • The Journal of Physical Chemistry C, Vol. 117, Issue 21
  • DOI: 10.1021/jp311616s

New Porous Crystals of Extended Metal-Catecholates
journal, August 2012

  • Hmadeh, Mohamad; Lu, Zheng; Liu, Zheng
  • Chemistry of Materials, Vol. 24, Issue 18, p. 3511-3513
  • DOI: 10.1021/cm301194a

Hydrogen motion in oxides: from insulators to bronzes
journal, March 2004


Proton Transfer 200 Years after von Grotthuss: Insights from Ab Initio Simulations
journal, September 2006


Transition from Battery to Pseudocapacitor Behavior via Structural Water in Tungsten Oxide
journal, April 2017


Operando Atomic Force Microscopy Reveals Mechanics of Structural Water Driven Battery-to-Pseudocapacitor Transition
journal, May 2018


Electrodeposited non-stoichiometric tungstic acid for electrochromic applications: film growth modes, crystal structure, redox behavior and stability
journal, December 2016


Electrochemically Induced Phase Transformation in Nanoscale Olivines Li 1− x MPO 4 (M = Fe, Mn)
journal, October 2008

  • Meethong, Nonglak; Kao, Yu-Hua; Tang, Ming
  • Chemistry of Materials, Vol. 20, Issue 19
  • DOI: 10.1021/cm801722f

Electrochemically Induced Structural Transformation in a γ-MnO 2 Cathode of a High Capacity Zinc-Ion Battery System
journal, May 2015

  • Alfaruqi, Muhammad H.; Mathew, Vinod; Gim, Jihyeon
  • Chemistry of Materials, Vol. 27, Issue 10
  • DOI: 10.1021/cm504717p

Kinetic analysis of lithium intercalating systems: cyclic voltammetry
journal, February 2016


Intercalation dynamics in rechargeable battery materials: General theory and phase-transformation waves in LiFePO4
journal, November 2008


Thermochemistry of the hydrogen insertion compounds formed by the molybdic and tungstic acids HxMO3·nH2O (M=Mo, n=1; M=W, n=1,2)
journal, March 1987


Pseudocapacitive oxide materials for high-rate electrochemical energy storage
journal, January 2014

  • Augustyn, Veronica; Simon, Patrice; Dunn, Bruce
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c3ee44164d

Investigation of Pseudocapacitive Charge-Storage Reaction of MnO[sub 2]⋅nH[sub 2]O Supercapacitors in Aqueous Electrolytes
journal, January 2006

  • Kuo, Shin-Liang; Wu, Nae-Lih
  • Journal of The Electrochemical Society, Vol. 153, Issue 7
  • DOI: 10.1149/1.2197667

Cation intercalation in sputter-deposited W oxide films
journal, October 1998


A time-of-flight backscattering spectrometer at the Spallation Neutron Source, BASIS
journal, August 2011

  • Mamontov, E.; Herwig, K. W.
  • Review of Scientific Instruments, Vol. 82, Issue 8
  • DOI: 10.1063/1.3626214

SEQUOIA: A Newly Operating Chopper Spectrometer at the SNS
journal, November 2010


Nuclear Resonance Absorption in Hydrated Crystals: Fine Structure of the Proton Line
journal, April 1948

  • Pake, G. E.
  • The Journal of Chemical Physics, Vol. 16, Issue 4
  • DOI: 10.1063/1.1746878

Linear coupling of alignment with transport in a polymer electrolyte membrane
journal, June 2011

  • Li, Jing; Park, Jong Keun; Moore, Robert B.
  • Nature Materials, Vol. 10, Issue 7
  • DOI: 10.1038/nmat3048

NMR study of water reorientation in molybdic acids: MoO3 · 2H2O and yellow MoO3 · H2O
journal, October 1981


Electrochemical Intercalation of Mg 2+ into Anhydrous and Hydrated Crystalline Tungsten Oxides
journal, July 2017


Non-Grotthuss proton diffusion mechanism in tungsten oxide dihydrate from first-principles calculations
journal, January 2014

  • Lin, Hao; Zhou, Fei; Liu, Chi-Ping
  • Journal of Materials Chemistry A, Vol. 2, Issue 31
  • DOI: 10.1039/C4TA02465F

The tungsten bronzes and related compounds
journal, January 1968

  • Dickens, P. G.; Whittingham, M. S.
  • Quarterly Reviews, Chemical Society, Vol. 22, Issue 1
  • DOI: 10.1039/qr9682200030

Proton conductivity of tungsten trioxide hydrates at intermediate temperature
journal, October 2000


Intrinsic and extrinsic proton conductivity in metal-organic frameworks
journal, January 2014