DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying and Suppressing Proton Intercalation to Enable High-Voltage Zn-Ion Batteries

Abstract

Rechargeable Zn-ion batteries (ZIBs) are widely regarded as promising candidates for large-scale energy storage applications. Like most multivalent battery systems (based on Zn, Mg, Ca, etc.), further progress in ZIB development relies on the discovery and design of novel cathode hosts capable of reversible Zn2+ (de)intercalation. This work employs VPO4F as a ZIB cathode and explores ensuing intercalation mechanisms along with interfacial dynamics during cycling to quantify the water dynamics in concentrated electrolytes and/or hybrid aqueous-non aqueous (HANEs) electrolyte(s). Like most oxide-based cathode materials, proton (H+) intercalation dominates electrochemical activity during discharge of ZnxHyVPO4F in aqueous media due to the hydroxylated nature of the interface. Such H+ electrochemistry diminishes low-rate and/or long-term electrochemical performance of ZIBs which inhibits implementation for practical applications. Thus, quantification of the water dynamics in various electrolytes is demonstrated for the first time. Detailed investigations of water mobility in various concentrated electrolytes and HANEs systems enable the design of an electrolyte that enhances aqueous anodic stability and suppresses water/proton activity during discharge. Tuning Zn2+/H+ intercalation kinetics simultaneously allows for a high voltage (1.9 V) and long-lasting aqueous zinc-ion battery: Zn|Zn(OTf)2·nH2O-PC|ZnxHyVPO4F.

Authors:
ORCiD logo [1];  [2];  [1];  [3];  [4];  [3];  [3];  [3]; ORCiD logo [5];  [6];  [2];  [4]
  1. Fudan Univ., Shanghai (China)
  2. Univ. of Waterloo, ON (Canada)
  3. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Neutron Research
  4. Univ. of Maryland, College Park, MD (United States)
  5. Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Div.
  6. Army Research Lab., Adelphi, MD (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office; USDOE Advanced Research Projects Agency - Energy (ARPA-E); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1827175
Report Number(s):
BNL-222252-2021-JAAM
Journal ID: ISSN 1614-6832
Grant/Contract Number:  
SC0012704; AR0000389
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 11; Journal Issue: 41; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Zn-ion batteries; proton intercalation; x-ray absorption spectroscopy

Citation Formats

Wang, Fei, Blanc, Lauren E., Li, Qin, Faraone, Antonio, Ji, Xiao, Chen‐Mayer, Huaiyu H., Paul, Rick L., Dura, Joseph A., Hu, Enyuan, Xu, Kang, Nazar, Linda F., and Wang, Chunsheng. Quantifying and Suppressing Proton Intercalation to Enable High-Voltage Zn-Ion Batteries. United States: N. p., 2021. Web. doi:10.1002/aenm.202102016.
Wang, Fei, Blanc, Lauren E., Li, Qin, Faraone, Antonio, Ji, Xiao, Chen‐Mayer, Huaiyu H., Paul, Rick L., Dura, Joseph A., Hu, Enyuan, Xu, Kang, Nazar, Linda F., & Wang, Chunsheng. Quantifying and Suppressing Proton Intercalation to Enable High-Voltage Zn-Ion Batteries. United States. https://doi.org/10.1002/aenm.202102016
Wang, Fei, Blanc, Lauren E., Li, Qin, Faraone, Antonio, Ji, Xiao, Chen‐Mayer, Huaiyu H., Paul, Rick L., Dura, Joseph A., Hu, Enyuan, Xu, Kang, Nazar, Linda F., and Wang, Chunsheng. Mon . "Quantifying and Suppressing Proton Intercalation to Enable High-Voltage Zn-Ion Batteries". United States. https://doi.org/10.1002/aenm.202102016. https://www.osti.gov/servlets/purl/1827175.
@article{osti_1827175,
title = {Quantifying and Suppressing Proton Intercalation to Enable High-Voltage Zn-Ion Batteries},
author = {Wang, Fei and Blanc, Lauren E. and Li, Qin and Faraone, Antonio and Ji, Xiao and Chen‐Mayer, Huaiyu H. and Paul, Rick L. and Dura, Joseph A. and Hu, Enyuan and Xu, Kang and Nazar, Linda F. and Wang, Chunsheng},
abstractNote = {Rechargeable Zn-ion batteries (ZIBs) are widely regarded as promising candidates for large-scale energy storage applications. Like most multivalent battery systems (based on Zn, Mg, Ca, etc.), further progress in ZIB development relies on the discovery and design of novel cathode hosts capable of reversible Zn2+ (de)intercalation. This work employs VPO4F as a ZIB cathode and explores ensuing intercalation mechanisms along with interfacial dynamics during cycling to quantify the water dynamics in concentrated electrolytes and/or hybrid aqueous-non aqueous (HANEs) electrolyte(s). Like most oxide-based cathode materials, proton (H+) intercalation dominates electrochemical activity during discharge of ZnxHyVPO4F in aqueous media due to the hydroxylated nature of the interface. Such H+ electrochemistry diminishes low-rate and/or long-term electrochemical performance of ZIBs which inhibits implementation for practical applications. Thus, quantification of the water dynamics in various electrolytes is demonstrated for the first time. Detailed investigations of water mobility in various concentrated electrolytes and HANEs systems enable the design of an electrolyte that enhances aqueous anodic stability and suppresses water/proton activity during discharge. Tuning Zn2+/H+ intercalation kinetics simultaneously allows for a high voltage (1.9 V) and long-lasting aqueous zinc-ion battery: Zn|Zn(OTf)2·nH2O-PC|ZnxHyVPO4F.},
doi = {10.1002/aenm.202102016},
journal = {Advanced Energy Materials},
number = 41,
volume = 11,
place = {United States},
year = {Mon Oct 04 00:00:00 EDT 2021},
month = {Mon Oct 04 00:00:00 EDT 2021}
}

Works referenced in this record:

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Cation-Deficient Spinel ZnMn 2 O 4 Cathode in Zn(CF 3 SO 3 ) 2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery
journal, September 2016

  • Zhang, Ning; Cheng, Fangyi; Liu, Yongchang
  • Journal of the American Chemical Society, Vol. 138, Issue 39
  • DOI: 10.1021/jacs.6b05958

Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges
journal, February 2017

  • Canepa, Pieremanuele; Sai Gautam, Gopalakrishnan; Hannah, Daniel C.
  • Chemical Reviews, Vol. 117, Issue 5
  • DOI: 10.1021/acs.chemrev.6b00614

Electrochemical Property:  Structure Relationships in Monoclinic Li 3 - y V 2 (PO 4 ) 3
journal, August 2003

  • Yin, S. -C.; Grondey, H.; Strobel, P.
  • Journal of the American Chemical Society, Vol. 125, Issue 34
  • DOI: 10.1021/ja034565h

Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery
journal, December 2011

  • Xu, Chengjun; Li, Baohua; Du, Hongda
  • Angewandte Chemie International Edition, Vol. 51, Issue 4
  • DOI: 10.1002/anie.201106307

Zn/MnO 2 Battery Chemistry With H + and Zn 2+ Coinsertion
journal, July 2017

  • Sun, Wei; Wang, Fei; Hou, Singyuk
  • Journal of the American Chemical Society, Vol. 139, Issue 29
  • DOI: 10.1021/jacs.7b04471

Full open-framework batteries for stationary energy storage
journal, January 2014

  • Pasta, Mauro; Wessells, Colin D.; Liu, Nian
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4007

Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers
journal, April 2018


Accessing the 2 V VV/VIV redox process of vanadyl phosphate cathode for aqueous batteries
journal, September 2021


Na 3 MnZr(PO 4 ) 3 : A High-Voltage Cathode for Sodium Batteries
journal, December 2018

  • Gao, Hongcai; Seymour, Ieuan D.; Xin, Sen
  • Journal of the American Chemical Society, Vol. 140, Issue 51
  • DOI: 10.1021/jacs.8b11388

NASICON Na 3 V 2 (PO 4 ) 3 Enables Quasi-Two-Stage Na + and Zn 2+ Intercalation for Multivalent Zinc Batteries
journal, March 2020


A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long‐Cycle‐Life Batteries
journal, June 2019


Charge storage mechanism of MnO 2 cathodes in Zn/MnO 2 batteries using ionic liquid-based gel polymer electrolytes
journal, November 2015


Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities
journal, September 2017


Hybrid Aqueous/Non-aqueous Electrolyte for Safe and High-Energy Li-Ion Batteries
journal, May 2018


A New Strategy for High-Voltage Cathodes for K-Ion Batteries: Stoichiometric KVPO 4 F
journal, July 2018

  • Kim, Haegyeom; Seo, Dong-Hwa; Bianchini, Matteo
  • Advanced Energy Materials, Vol. 8, Issue 26
  • DOI: 10.1002/aenm.201801591

Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System
journal, September 2014

  • Zhang, Leyuan; Chen, Liang; Zhou, Xufeng
  • Advanced Energy Materials, Vol. 5, Issue 2
  • DOI: 10.1002/aenm.201400930

An organic/inorganic electrode-based hydronium-ion battery
journal, February 2020


Reversible aqueous zinc/manganese oxide energy storage from conversion reactions
journal, April 2016


Effects of Inorganic Cation Templates on Octahedral Molecular Sieves of Manganese Oxide
journal, November 1994

  • Shen, Yan-Fei; Suib, Steven L.; O'Young, Chi-Lin
  • Journal of the American Chemical Society, Vol. 116, Issue 24
  • DOI: 10.1021/ja00103a018

Hydrated Intercalation for High‐Performance Aqueous Zinc Ion Batteries
journal, February 2019

  • Shin, Jaeho; Choi, Dong Shin; Lee, Hyeon Jeong
  • Advanced Energy Materials, Vol. 9, Issue 14
  • DOI: 10.1002/aenm.201900083

Towards a calcium-based rechargeable battery
journal, October 2015

  • Ponrouch, A.; Frontera, C.; Bardé, F.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4462

Achieving Both High Voltage and High Capacity in Aqueous Zinc‐Ion Battery for Record High Energy Density
journal, September 2019

  • Ma, Longtao; Li, Na; Long, Changbai
  • Advanced Functional Materials, Vol. 29, Issue 46
  • DOI: 10.1002/adfm.201906142

Issues and opportunities facing aqueous zinc-ion batteries
journal, January 2019

  • Tang, Boya; Shan, Lutong; Liang, Shuquan
  • Energy & Environmental Science, Vol. 12, Issue 11
  • DOI: 10.1039/C9EE02526J

A High‐Energy NASICON‐Type Cathode Material for Na‐Ion Batteries
journal, March 2020

  • Wang, Jingyang; Wang, Yan; Seo, Dong‐Hwa
  • Advanced Energy Materials, Vol. 10, Issue 10
  • DOI: 10.1002/aenm.201903968

Role of Structural H 2 O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V 2 O 5
journal, March 2016

  • Sai Gautam, Gopalakrishnan; Canepa, Pieremanuele; Richards, William Davidson
  • Nano Letters, Vol. 16, Issue 4
  • DOI: 10.1021/acs.nanolett.5b05273

H + ‐Insertion Boosted α‐MnO 2 for an Aqueous Zn‐Ion Battery
journal, January 2020


Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries
journal, September 2018


Origin of Electrochemical, Structural, and Transport Properties in Nonaqueous Zinc Electrolytes
journal, January 2016

  • Han, Sang-Don; Rajput, Nav Nidhi; Qu, Xiaohui
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 5
  • DOI: 10.1021/acsami.5b10024

Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials
journal, April 2015

  • Wang, Richard Y.; Shyam, Badri; Stone, Kevin H.
  • Advanced Energy Materials, Vol. 5, Issue 12
  • DOI: 10.1002/aenm.201401869

How Water Accelerates Bivalent Ion Diffusion at the Electrolyte/Electrode Interface
journal, August 2018

  • Wang, Fei; Sun, Wei; Shadike, Zulipiya
  • Angewandte Chemie International Edition, Vol. 57, Issue 37
  • DOI: 10.1002/anie.201806748

Oxide versus Nonoxide Cathode Materials for Aqueous Zn Batteries: An Insight into the Charge Storage Mechanism and Consequences Thereof
journal, December 2018

  • Oberholzer, Pascal; Tervoort, Elena; Bouzid, Assil
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 1
  • DOI: 10.1021/acsami.8b16284

Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes
journal, February 2020


A High Power Rechargeable Nonaqueous Multivalent Zn/V 2 O 5 Battery
journal, August 2016

  • Senguttuvan, Premkumar; Han, Sang-Don; Kim, Soojeong
  • Advanced Energy Materials, Vol. 6, Issue 24
  • DOI: 10.1002/aenm.201600826

Investigation of Alkali‐Ion (Li, Na, and K) Intercalation in K x VPO 4 F ( x ∼ 0) Cathode
journal, June 2019

  • Kim, Haegyeom; Ishado, Yuji; Tian, Yaosen
  • Advanced Functional Materials, Vol. 29, Issue 34
  • DOI: 10.1002/adfm.201902392

Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface
journal, January 2018

  • Kundu, Dipan; Hosseini Vajargah, Shahrzad; Wan, Liwen
  • Energy & Environmental Science, Vol. 11, Issue 4
  • DOI: 10.1039/C8EE00378E

Prussian Blue Analogs as Battery Materials
journal, October 2018


The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Investigation of the Mechanism of Mg Insertion in Birnessite in Nonaqueous and Aqueous Rechargeable Mg-Ion Batteries
journal, January 2016


Synthesis and Crystallographic Study of Homeotypic LiVPO 4 F and LiVPO 4 O
journal, February 2012

  • Ateba Mba, Jean-Marcel; Masquelier, Christian; Suard, Emmanuelle
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm3003996

Layered Mg x V 2 O 5 · n H 2 O as Cathode Material for High-Performance Aqueous Zinc Ion Batteries
journal, September 2018


Delithiation/lithiation behaviors of three polymorphs of LiVOPO 4
journal, January 2018

  • He, Guang; Kan, Wang Hay; Manthiram, Arumugam
  • Chemical Communications, Vol. 54, Issue 94
  • DOI: 10.1039/C8CC07446A

Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode
journal, February 2018

  • Xia, Chuan; Guo, Jing; Li, Peng
  • Angewandte Chemie International Edition, Vol. 57, Issue 15
  • DOI: 10.1002/anie.201713291

Reversible Oxygen Redox Chemistry in Aqueous Zinc‐Ion Batteries
journal, May 2019

  • Wan, Fang; Zhang, Yan; Zhang, Linlin
  • Angewandte Chemie International Edition, Vol. 58, Issue 21
  • DOI: 10.1002/anie.201902679

Achieving High‐Voltage and High‐Capacity Aqueous Rechargeable Zinc Ion Battery by Incorporating Two‐Species Redox Reaction
journal, October 2019

  • Ma, Longtao; Chen, Shengmei; Long, Changbai
  • Advanced Energy Materials, Vol. 9, Issue 45
  • DOI: 10.1002/aenm.201902446

Inhibiting VOPO 4x  H 2 O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities
journal, November 2019

  • Shi, Hua‐Yu; Song, Yu; Qin, Zengming
  • Angewandte Chemie International Edition, Vol. 58, Issue 45
  • DOI: 10.1002/anie.201908853

A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
journal, August 2016


LiVPO 4 F 1– y O y Tavorite-Type Compositions: Influence of the Concentration of Vanadyl-Type Defects on the Structure and Electrochemical Performance
journal, July 2018


Structure and Electrochemistry of Two-Electron Redox Couples in Lithium Metal Fluorophosphates Based on the Tavorite Structure
journal, December 2011

  • Ellis, Brian L.; Ramesh, T. N.; Davis, Linda J. M.
  • Chemistry of Materials, Vol. 23, Issue 23
  • DOI: 10.1021/cm201773n

A profile refinement method for nuclear and magnetic structures
journal, June 1969


Highly reversible zinc metal anode for aqueous batteries
journal, April 2018


Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries
journal, October 2019


Scientific Challenges for the Implementation of Zn-Ion Batteries
journal, April 2020