DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion

Abstract

The optical efficiency of lanthanide-based upconversion is intricately related to the crystalline host lattice. Different crystal fields interacting with the electron clouds of the lanthanides can significantly affect transition probabilities between the energy levels. Here, we investigate six distinct alkaline-earth rare-earth fluoride host materials (M1-xLnxF2+x, MLnF) for infrared-to-visible upconversion, focusing on nanoparticles of CaYF, CaLuF, SrYF, SrLuF, BaYF, and BaLuF doped with Yb3+ and Er3+. We first synthesize ~5 nm upconverting cores of each material via a thermal decomposition method. Then we introduce a dropwise hot-injection method to grow optically inert MYF shell layers around the active cores. Five distinct shell thicknesses are considered for each host material, resulting in 36 unique, monodisperse upconverting nanomaterials each with size below ~15 nm. The upconversion quantum yield (UCQY) is measured for all core/shell nanoparticles as a function of shell thickness and compared with hexagonal (β-phase) NaGdF4, a traditional upconverting host lattice. While the UCQY of core nanoparticles is below the detection limit (<10-5%), it increases by 4 to 5 orders of magnitude as the shell thickness approaches 4-6 nm. The UCQY values of our cubic MLnF nanoparticles meet or exceed the β-NaGdF4 reference sample. Across all core/shell samples, SrLuF nanoparticles are themore » most efficient, with UCQY values of 0.53% at 80 W/cm2 for cubic nanoparticles with ~11 nm edge length. This efficiency is 5 times higher than our β-NaGdF4 reference material with comparable core size and shell thickness. Our work demonstrates efficient and bright upconversion in ultrasmall alkaline-earth-based nanoparticles, with applications spanning biological imaging and optical sensing.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [2];  [1]
  1. Stanford Univ., CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoScience Inst., Berkeley, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Photonics at Thermodynamic Limits (PTL); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1545151
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 19; Journal Issue: 6; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Fischer, Stefan, Mehlenbacher, Randy D., Lay, Alice, Siefe, Chris, Alivisatos, A. Paul, and Dionne, Jennifer A. Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion. United States: N. p., 2019. Web. doi:10.1021/acs.nanolett.9b01057.
Fischer, Stefan, Mehlenbacher, Randy D., Lay, Alice, Siefe, Chris, Alivisatos, A. Paul, & Dionne, Jennifer A. Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion. United States. https://doi.org/10.1021/acs.nanolett.9b01057
Fischer, Stefan, Mehlenbacher, Randy D., Lay, Alice, Siefe, Chris, Alivisatos, A. Paul, and Dionne, Jennifer A. Mon . "Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion". United States. https://doi.org/10.1021/acs.nanolett.9b01057. https://www.osti.gov/servlets/purl/1545151.
@article{osti_1545151,
title = {Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion},
author = {Fischer, Stefan and Mehlenbacher, Randy D. and Lay, Alice and Siefe, Chris and Alivisatos, A. Paul and Dionne, Jennifer A.},
abstractNote = {The optical efficiency of lanthanide-based upconversion is intricately related to the crystalline host lattice. Different crystal fields interacting with the electron clouds of the lanthanides can significantly affect transition probabilities between the energy levels. Here, we investigate six distinct alkaline-earth rare-earth fluoride host materials (M1-xLnxF2+x, MLnF) for infrared-to-visible upconversion, focusing on nanoparticles of CaYF, CaLuF, SrYF, SrLuF, BaYF, and BaLuF doped with Yb3+ and Er3+. We first synthesize ~5 nm upconverting cores of each material via a thermal decomposition method. Then we introduce a dropwise hot-injection method to grow optically inert MYF shell layers around the active cores. Five distinct shell thicknesses are considered for each host material, resulting in 36 unique, monodisperse upconverting nanomaterials each with size below ~15 nm. The upconversion quantum yield (UCQY) is measured for all core/shell nanoparticles as a function of shell thickness and compared with hexagonal (β-phase) NaGdF4, a traditional upconverting host lattice. While the UCQY of core nanoparticles is below the detection limit (<10-5%), it increases by 4 to 5 orders of magnitude as the shell thickness approaches 4-6 nm. The UCQY values of our cubic MLnF nanoparticles meet or exceed the β-NaGdF4 reference sample. Across all core/shell samples, SrLuF nanoparticles are the most efficient, with UCQY values of 0.53% at 80 W/cm2 for cubic nanoparticles with ~11 nm edge length. This efficiency is 5 times higher than our β-NaGdF4 reference material with comparable core size and shell thickness. Our work demonstrates efficient and bright upconversion in ultrasmall alkaline-earth-based nanoparticles, with applications spanning biological imaging and optical sensing.},
doi = {10.1021/acs.nanolett.9b01057},
journal = {Nano Letters},
number = 6,
volume = 19,
place = {United States},
year = {Mon May 06 00:00:00 EDT 2019},
month = {Mon May 06 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 51 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material
journal, June 2014

  • Pust, Philipp; Weiler, Volker; Hecht, Cora
  • Nature Materials, Vol. 13, Issue 9
  • DOI: 10.1038/nmat4012

Mining Unexplored Chemistries for Phosphors for High-Color-Quality White-Light-Emitting Diodes
journal, May 2018


Unprecedented Deep-Red Ce 3+ Luminescence of the Nitridolithosilicates Li 38.7 RE 3.3 Ca 5.7 [Li 2 Si 30 N 59 ]O 2 F ( RE = La, Ce, Y)
journal, July 2018


Ce 3+ -Doped garnet phosphors: composition modification, luminescence properties and applications
journal, January 2017

  • Xia, Zhiguo; Meijerink, Andries
  • Chemical Society Reviews, Vol. 46, Issue 1
  • DOI: 10.1039/C6CS00551A

Enhancing solar cell efficiency: the search for luminescent materials as spectral converters
journal, January 2013

  • Huang, Xiaoyong; Han, Sanyang; Huang, Wei
  • Chem. Soc. Rev., Vol. 42, Issue 1
  • DOI: 10.1039/C2CS35288E

Upconversion for Photovoltaics - a Review of Materials, Devices and Concepts for Performance Enhancement
journal, April 2015

  • Goldschmidt, Jan Christoph; Fischer, Stefan
  • Advanced Optical Materials, Vol. 3, Issue 4
  • DOI: 10.1002/adom.201500024

Photon upconversion in core–shell nanoparticles
journal, January 2015

  • Chen, Xian; Peng, Denfeng; Ju, Qiang
  • Chemical Society Reviews, Vol. 44, Issue 6
  • DOI: 10.1039/C4CS00151F

Perspectives for Upconverting Nanoparticles
journal, September 2017


The Active-Core/Active-Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles
journal, September 2009

  • Vetrone, Fiorenzo; Naccache, Rafik; Mahalingam, Venkataramanan
  • Advanced Functional Materials, Vol. 19, Issue 18
  • DOI: 10.1002/adfm.200900234

Self-Focusing by Ostwald Ripening: A Strategy for Layer-by-Layer Epitaxial Growth on Upconverting Nanocrystals
journal, June 2012

  • Johnson, Noah J. J.; Korinek, Andreas; Dong, Cunhai
  • Journal of the American Chemical Society, Vol. 134, Issue 27
  • DOI: 10.1021/ja302717u

Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals
journal, January 2016

  • Liu, Deming; Xu, Xiaoxue; Du, Yi
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10254

Controlled Isotropic and Anisotropic Shell Growth in β-NaLnF 4 Nanocrystals Induced by Precursor Injection Rate
journal, August 2017

  • Fischer, Stefan; Swabeck, Joseph K.; Alivisatos, A. Paul
  • Journal of the American Chemical Society, Vol. 139, Issue 35
  • DOI: 10.1021/jacs.7b07496

Mechanistic Investigation of Photon Upconversion in Nd 3+ -Sensitized Core–Shell Nanoparticles
journal, August 2013

  • Xie, Xiaoji; Gao, Nengyue; Deng, Renren
  • Journal of the American Chemical Society, Vol. 135, Issue 34
  • DOI: 10.1021/ja4075002

Nd 3+ -Sensitized multicolor upconversion luminescence from a sandwiched core/shell/shell nanostructure
journal, January 2017

  • Hao, Shuwei; Chen, Guanying; Yang, Chunhui
  • Nanoscale, Vol. 9, Issue 30
  • DOI: 10.1039/C7NR02594G

Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging
journal, March 2014

  • Gargas, Daniel J.; Chan, Emory M.; Ostrowski, Alexis D.
  • Nature Nanotechnology, Vol. 9, Issue 4
  • DOI: 10.1038/nnano.2014.29

Relation between Excitation Power Density and Er 3+ Doping Yielding the Highest Absolute Upconversion Quantum Yield
journal, December 2014

  • Fischer, Stefan; Fröhlich, Benjamin; Krämer, Karl W.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 51
  • DOI: 10.1021/jp510209x

Optimal Sensitizer Concentration in Single Upconversion Nanocrystals
journal, April 2017


Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals
journal, August 2018

  • Tian, Bining; Fernandez-Bravo, Angel; Najafiaghdam, Hossein
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-05577-8

Advances in highly doped upconversion nanoparticles
journal, June 2018


The Fluoride Host: Nucleation, Growth, and Upconversion of Lanthanide-Doped Nanoparticles
journal, March 2015

  • Naccache, Rafik; Yu, Qing; Capobianco, John A.
  • Advanced Optical Materials, Vol. 3, Issue 4
  • DOI: 10.1002/adom.201400628

Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth: Shell Thickness and Doping Position Dependence in Upconverting Optical Properties
journal, December 2012

  • Li, Xiaomin; Shen, Dengke; Yang, Jianping
  • Chemistry of Materials, Vol. 25, Issue 1
  • DOI: 10.1021/cm3033498

Ostwald Ripening, Particle Size Focusing, and Decomposition of Sub-10 nm NaREF 4 (RE = La, Ce, Pr, Nd) Nanocrystals
journal, September 2014

  • Naduviledathu Raj, A.; Rinkel, T.; Haase, M.
  • Chemistry of Materials, Vol. 26, Issue 19
  • DOI: 10.1021/cm502532r

Quantum Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell Upconverting Nanoparticles
journal, March 2018

  • Würth, Christian; Fischer, Stefan; Grauel, Bettina
  • Journal of the American Chemical Society, Vol. 140, Issue 14
  • DOI: 10.1021/jacs.8b01458

Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal
journal, October 2015


Highly efficient upconversion in Er^3+ doped BaY_2F_8 single crystals: dependence of quantum yield on excitation wavelength and thickness
journal, January 2015

  • Boccolini, Alessandro; Favilla, Elena; Tonelli, Mauro
  • Optics Express, Vol. 23, Issue 15
  • DOI: 10.1364/OE.23.00A903

Enhancement of upconversion luminescence of Y2O3:Er3+ nanocrystals by codoping Li+–Zn2+
journal, January 2011


Enhancing multiphoton upconversion through energy clustering at sublattice level
journal, November 2013

  • Wang, Juan; Deng, Renren; MacDonald, Mark A.
  • Nature Materials, Vol. 13, Issue 2
  • DOI: 10.1038/nmat3804

Upconverting Nanoparticles
journal, May 2011

  • Haase, Markus; Schäfer, Helmut
  • Angewandte Chemie International Edition, Vol. 50, Issue 26
  • DOI: 10.1002/anie.201005159

Small and Bright Lithium-Based Upconverting Nanoparticles
journal, September 2018

  • Cheng, Ting; Marin, Riccardo; Skripka, Artiom
  • Journal of the American Chemical Society, Vol. 140, Issue 40
  • DOI: 10.1021/jacs.8b07086

Upconversion Luminescence of Monodisperse CaF 2 :Yb 3+ /Er 3+ Nanocrystals
journal, September 2009

  • Wang, Guofeng; Peng, Qing; Li, Yadong
  • Journal of the American Chemical Society, Vol. 131, Issue 40
  • DOI: 10.1021/ja906732y

Water (H 2 O and D 2 O) Dispersible NIR-to-NIR Upconverting Yb 3+ /Tm 3+ Doped MF 2 (M = Ca, Sr) Colloids: Influence of the Host Crystal
journal, October 2013

  • Pedroni, M.; Piccinelli, F.; Passuello, T.
  • Crystal Growth & Design, Vol. 13, Issue 11
  • DOI: 10.1021/cg401077v

Intense ultraviolet upconversion in water dispersible SrF 2 :Tm 3+ ,Yb 3+ nanoparticles: the effect of the environment on light emissions
journal, January 2015

  • Quintanilla, M.; Cantarelli, I. X.; Pedroni, M.
  • Journal of Materials Chemistry C, Vol. 3, Issue 13
  • DOI: 10.1039/C4TC02791D

New Fluoride Compounds for Efficient Infrared‐To‐Visible Conversion
journal, July 1969

  • Guggenheim, H. J.; Johnson, L. F.
  • Applied Physics Letters, Vol. 15, Issue 2
  • DOI: 10.1063/1.1652898

Infrared‐to‐Visible Conversion by Rare‐Earth Ions in Crystals
journal, March 1972

  • Johnson, L. F.; Guggenheim, H. J.; Rich, T. C.
  • Journal of Applied Physics, Vol. 43, Issue 3
  • DOI: 10.1063/1.1661225

Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter
journal, May 2015


Near-Infrared-to-Blue Upconversion in Colloidal BaYF 5 :Tm 3+ , Yb 3+ Nanocrystals
journal, May 2009

  • Vetrone, Fiorenzo; Mahalingam, Venkataramanan; Capobianco, John A.
  • Chemistry of Materials, Vol. 21, Issue 9
  • DOI: 10.1021/cm900313s

Upconversion luminescence in BaYF5, BaGdF5 and BaLuF5 nanocrystals doped with Yb3+/Ho3+, Yb3+/Er3+ or Yb3+/Tm3+ ions
journal, November 2015


Solvothermal synthesis and tailored upconversion emission of monodisperse ultrasmall face-centered cubic Sr2YF7 nanocrystals
journal, June 2012


Comparative analysis of upconversion efficiencies in fluoride materials for photovoltaic application
journal, December 2016


Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells
journal, November 2015

  • Fischer, Stefan; Johnson, Noah J. J.; Pichaandi, Jothirmayanantham
  • Journal of Applied Physics, Vol. 118, Issue 19
  • DOI: 10.1063/1.4936119

Precise Tuning of Surface Quenching for Luminescence Enhancement in Core–Shell Lanthanide-Doped Nanocrystals
journal, October 2016


Explaining the Nanoscale Effect in the Upconversion Dynamics of β-NaYF 4 :Yb 3+ , Er 3+ Core and Core–Shell Nanocrystals
journal, July 2017

  • Hossan, Md Yeathad; Hor, Amy; Luu, QuocAnh
  • The Journal of Physical Chemistry C, Vol. 121, Issue 30
  • DOI: 10.1021/acs.jpcc.7b04567

Direct Evidence of Significant Cation Intermixing in Upconverting Core@Shell Nanocrystals: Toward a New Crystallochemical Model
journal, November 2017


Classical Aspects of Energy Transfer in Molecular Systems
journal, July 1970

  • Kuhn, Hans
  • The Journal of Chemical Physics, Vol. 53, Issue 1
  • DOI: 10.1063/1.1673749

Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles
journal, January 2010

  • Boyer, John-Christopher; van Veggel, Frank C. J. M.
  • Nanoscale, Vol. 2, Issue 8
  • DOI: 10.1039/c0nr00253d

Works referencing / citing this record: