DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bright, Mechanosensitive Upconversion with Cubic-Phase Heteroepitaxial Core–Shell Nanoparticles

Abstract

Lanthanide-doped nanoparticles are an emerging class of optical sensors, exhibiting sharp emission peaks, high signal-to-noise ratio, photostability, and a ratiometric color response to stress. The same centrosymmetric crystal field environment that allows for high mechanosensitivity in the cubic-phase (α), however, contributes to low upconversion quantum yield (UCQY). In this work, we engineer brighter mechanosensitive upconverters using a core-shell geometry. Sub-25 nm α-NaYF4:Yb,Er cores are shelled with an optically inert surface passivation layer of ~4.5 nm thickness. Using different shell materials, including NaGdF4, NaYF4, and NaLuF4, we study how compressive to tensile strain influences the nanoparticles' imaging and sensing properties. All core-shell nanoparticles exhibit enhanced UCQY, up to 0.14% at 150 W/cm2, which rivals the efficiency of unshelled hexagonal-phase (β) nanoparticles. Additionally, strain at the core-shell interface can tune mechanosensitivity. In particular, the compressive Gd shell results in the largest color response from yellow-green to orange or, quantitatively, a change in the red to green ratio of 12.2 ± 1.2% per GPa. For all samples, the ratiometric readouts are consistent over three pressure cycles from ambient to 5 GPa. Therefore, heteroepitaxial shelling significantly improves signal brightness without compromising the core's mechano-sensing capabilities and further, promotes core-shell cubic-phase nanoparticles as upcoming inmore » vivo and in situ optical sensors.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [2];  [1];  [1]
  1. Stanford Univ., Stanford, CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoScience Institute, Berkeley, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI); SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1464057
Alternate Identifier(s):
OSTI ID: 1532327
Grant/Contract Number:  
AC02-05CH11231; AC02-76SF00515; SC0001293; FI 2042/1-1; 2013156180
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 18; Journal Issue: 7; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; core−shell; Heteroepitaxial; lanthanides; mechanosensitivity; quantum yield; upconversion

Citation Formats

Lay, Alice, Siefe, Chris, Fischer, Stefan, Mehlenbacher, Randy D., Ke, Feng, Mao, Wendy L., Alivisatos, A. Paul, Goodman, Miriam B., and Dionne, Jennifer A. Bright, Mechanosensitive Upconversion with Cubic-Phase Heteroepitaxial Core–Shell Nanoparticles. United States: N. p., 2018. Web. doi:10.1021/acs.nanolett.8b01535.
Lay, Alice, Siefe, Chris, Fischer, Stefan, Mehlenbacher, Randy D., Ke, Feng, Mao, Wendy L., Alivisatos, A. Paul, Goodman, Miriam B., & Dionne, Jennifer A. Bright, Mechanosensitive Upconversion with Cubic-Phase Heteroepitaxial Core–Shell Nanoparticles. United States. https://doi.org/10.1021/acs.nanolett.8b01535
Lay, Alice, Siefe, Chris, Fischer, Stefan, Mehlenbacher, Randy D., Ke, Feng, Mao, Wendy L., Alivisatos, A. Paul, Goodman, Miriam B., and Dionne, Jennifer A. Thu . "Bright, Mechanosensitive Upconversion with Cubic-Phase Heteroepitaxial Core–Shell Nanoparticles". United States. https://doi.org/10.1021/acs.nanolett.8b01535. https://www.osti.gov/servlets/purl/1464057.
@article{osti_1464057,
title = {Bright, Mechanosensitive Upconversion with Cubic-Phase Heteroepitaxial Core–Shell Nanoparticles},
author = {Lay, Alice and Siefe, Chris and Fischer, Stefan and Mehlenbacher, Randy D. and Ke, Feng and Mao, Wendy L. and Alivisatos, A. Paul and Goodman, Miriam B. and Dionne, Jennifer A.},
abstractNote = {Lanthanide-doped nanoparticles are an emerging class of optical sensors, exhibiting sharp emission peaks, high signal-to-noise ratio, photostability, and a ratiometric color response to stress. The same centrosymmetric crystal field environment that allows for high mechanosensitivity in the cubic-phase (α), however, contributes to low upconversion quantum yield (UCQY). In this work, we engineer brighter mechanosensitive upconverters using a core-shell geometry. Sub-25 nm α-NaYF4:Yb,Er cores are shelled with an optically inert surface passivation layer of ~4.5 nm thickness. Using different shell materials, including NaGdF4, NaYF4, and NaLuF4, we study how compressive to tensile strain influences the nanoparticles' imaging and sensing properties. All core-shell nanoparticles exhibit enhanced UCQY, up to 0.14% at 150 W/cm2, which rivals the efficiency of unshelled hexagonal-phase (β) nanoparticles. Additionally, strain at the core-shell interface can tune mechanosensitivity. In particular, the compressive Gd shell results in the largest color response from yellow-green to orange or, quantitatively, a change in the red to green ratio of 12.2 ± 1.2% per GPa. For all samples, the ratiometric readouts are consistent over three pressure cycles from ambient to 5 GPa. Therefore, heteroepitaxial shelling significantly improves signal brightness without compromising the core's mechano-sensing capabilities and further, promotes core-shell cubic-phase nanoparticles as upcoming in vivo and in situ optical sensors.},
doi = {10.1021/acs.nanolett.8b01535},
journal = {Nano Letters},
number = 7,
volume = 18,
place = {United States},
year = {Thu Jun 21 00:00:00 EDT 2018},
month = {Thu Jun 21 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 47 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Schematic and micrographs of core-shell nanoparticles a) We shell up-converting cores with different materials to study the effects of compressive and tensile strain at the core-shell interface. In the presence of a lattice mismatch, we expect the shell to experience strain in order to conform to the coremore » much like heteroepitaxial thin film growth. With varied lanthanide ionic radii, we can access compressive to tensile strain, using an inert Gd shell (orange), an inert Y shell (teal), and an inert Lu shell (purple). b)-d) TEMs show the quasi-spherical morphology and monodispersity of synthesized nanoparticles. Average sizes or diameters are listed in the top right corner. The scale bar is 50 nm.« less

Save / Share:

Works referenced in this record:

Nanomaterials for in vivo imaging of mechanical forces and electrical fields
journal, December 2017


Upconversion nanoparticles in biological labeling, imaging, and therapy
journal, January 2010

  • Wang, Feng; Banerjee, Debapriya; Liu, Yongsheng
  • The Analyst, Vol. 135, Issue 8
  • DOI: 10.1039/c0an00144a

Stimuli responsive upconversion luminescence nanomaterials and films for various applications
journal, January 2015

  • Tsang, Ming-Kiu; Bai, Gongxun; Hao, Jianhua
  • Chemical Society Reviews, Vol. 44, Issue 6
  • DOI: 10.1039/C4CS00171K

Upconverting Nanoparticles as Optical Sensors of Nano- to Micro-Newton Forces
journal, June 2017


Strain-Induced Modification of Optical Selection Rules in Lanthanide-Based Upconverting Nanoparticles
journal, February 2015

  • Wisser, Michael D.; Chea, Maverick; Lin, Yu
  • Nano Letters, Vol. 15, Issue 3
  • DOI: 10.1021/nl504738k

NIR-to-NIR Two-Photon Excited CaF 2 :Tm 3+ ,Yb 3+ Nanoparticles: Multifunctional Nanoprobes for Highly Penetrating Fluorescence Bio-Imaging
journal, October 2011

  • Dong, Ning-Ning; Pedroni, Marco; Piccinelli, Fabio
  • ACS Nano, Vol. 5, Issue 11
  • DOI: 10.1021/nn202490m

Neodymium(iii) doped fluoride nanoparticles as non-contact optical temperature sensors
journal, January 2012

  • Wawrzynczyk, Dominika; Bednarkiewicz, Artur; Nyk, Marcin
  • Nanoscale, Vol. 4, Issue 22
  • DOI: 10.1039/c2nr32203j

Upconversion Luminescence Properties of NaYF 4 :Yb:Er Nanoparticles Codoped with Gd 3+
journal, January 2015

  • Klier, Dennis T.; Kumke, Michael U.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 6
  • DOI: 10.1021/jp5103548

High magnetic field and temperature tuning of up-conversion luminescence in Mn 2+ -doped (Er 3+ /Yb 3+ ): NaYF 4
journal, February 2015

  • Wang, Ya-Lan; Zhang, Jun-Pei; Han, Jun-Bo
  • Journal of Applied Physics, Vol. 117, Issue 8
  • DOI: 10.1063/1.4908607

Upconverting Nanoparticles
journal, May 2011

  • Haase, Markus; Schäfer, Helmut
  • Angewandte Chemie International Edition, Vol. 50, Issue 26
  • DOI: 10.1002/anie.201005159

Direct Evidence of a Surface Quenching Effect on Size-Dependent Luminescence of Upconversion Nanoparticles
journal, August 2010


Direct Evidence for Coupled Surface and Concentration Quenching Dynamics in Lanthanide-Doped Nanocrystals
journal, February 2017

  • Johnson, Noah J. J.; He, Sha; Diao, Shuo
  • Journal of the American Chemical Society, Vol. 139, Issue 8
  • DOI: 10.1021/jacs.7b00223

Precise Tuning of Surface Quenching for Luminescence Enhancement in Core–Shell Lanthanide-Doped Nanocrystals
journal, October 2016


Selective Cation Exchange Enabled Growth of Lanthanide Core/Shell Nanoparticles with Dissimilar Structure
journal, December 2017

  • Dong, Hao; Sun, Ling-Dong; Li, Lin-Dong
  • Journal of the American Chemical Society, Vol. 139, Issue 51
  • DOI: 10.1021/jacs.7b11836

Plasmon-Enhanced Upconversion
journal, November 2014

  • Wu, Di M.; García-Etxarri, Aitzol; Salleo, Alberto
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 22
  • DOI: 10.1021/jz5019042

Silica Coated Upconversion Nanoparticles: A Versatile Platform for the Development of Efficient Theranostics
journal, June 2015


Lanthanide-Based Heteroepitaxial Core–Shell Nanostructures: Compressive versus Tensile Strain Asymmetry
journal, October 2014

  • Johnson, Noah J. J.; van Veggel, Frank C. J. M.
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn503946t

Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain
journal, December 2008

  • Smith, Andrew M.; Mohs, Aaron M.; Nie, Shuming
  • Nature Nanotechnology, Vol. 4, Issue 1
  • DOI: 10.1038/nnano.2008.360

Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles
journal, January 2010

  • Boyer, John-Christopher; van Veggel, Frank C. J. M.
  • Nanoscale, Vol. 2, Issue 8
  • DOI: 10.1039/c0nr00253d

Energy Migration Upconversion in Manganese(II)‐Doped Nanoparticles
journal, September 2015

  • Li, Xiyan; Liu, Xiaowang; Chevrier, Daniel M.
  • Angewandte Chemie, Vol. 127, Issue 45
  • DOI: 10.1002/ange.201507176

Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility
journal, July 1997

  • Peng, Xiaogang; Schlamp, Michael C.; Kadavanich, Andreas V.
  • Journal of the American Chemical Society, Vol. 119, Issue 30, p. 7019-7029
  • DOI: 10.1021/ja970754m

Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation study
journal, January 1998

  • Dong, Liang; Schnitker, Jurgen; Smith, Richard W.
  • Journal of Applied Physics, Vol. 83, Issue 1
  • DOI: 10.1063/1.366676

Energetics and atomic mechanisms of dislocation nucleation in strained epitaxial layers
journal, October 2003


Works referencing / citing this record:

Accurate Control of Core–Shell Upconversion Nanoparticles through Anisotropic Strain Engineering
journal, August 2019

  • Zhao, Jianxiong; Chen, Xian; Chen, Bing
  • Advanced Functional Materials, Vol. 29, Issue 44
  • DOI: 10.1002/adfm.201903295

Stimuli‐Responsive Hybridized Nanostructures
journal, August 2019

  • Guan, Guijian; Wu, Mingda; Han, Ming‐Yong
  • Advanced Functional Materials, Vol. 30, Issue 2
  • DOI: 10.1002/adfm.201903439

Are lanthanide-doped upconversion materials good candidates for photocatalysis?
journal, January 2019

  • Zhang, Qingzhe; Yang, Fan; Xu, Zhenhe
  • Nanoscale Horizons, Vol. 4, Issue 3
  • DOI: 10.1039/c8nh00373d

Design of Layer‐Structured KAlF 4 :Yb/Er for Pressure‐Enhanced Upconversion Luminescence
journal, November 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.