DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics

Abstract

We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.

Authors:
 [1];  [1];  [2];  [3];  [4]
  1. Princeton Univ., NJ (United States). Program in Applied and Computational Mathematics
  2. Inst. of Applied Physics and Computational Mathematics, Beijing (China); CAEP Software Center for High Performance Numerical Simulation, Beijing (China)
  3. Princeton Univ., NJ (United States). Dept. of Chemistry. Dept. of Physics. Program in Applied and Computational Mathematics. Princeton Inst. for the Science and Technology of Materials
  4. Princeton Univ., NJ (United States). Dept. of Mathematics. Program in Applied and Computational Mathematics; Peking Univ., Beijing (China). Beijing Inst. of Big Data Research. Center for Data Science. Beijing International Center for Mathematical Research
Publication Date:
Research Org.:
Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
OSTI Identifier:
1541298
Alternate Identifier(s):
OSTI ID: 1431394
Grant/Contract Number:  
SC0008626; SC0009248
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 14; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Zhang, Linfeng, Han, Jiequn, Wang, Han, Car, Roberto, and E, Weinan. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics. United States: N. p., 2018. Web. doi:10.1103/physrevlett.120.143001.
Zhang, Linfeng, Han, Jiequn, Wang, Han, Car, Roberto, & E, Weinan. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics. United States. https://doi.org/10.1103/physrevlett.120.143001
Zhang, Linfeng, Han, Jiequn, Wang, Han, Car, Roberto, and E, Weinan. Wed . "Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics". United States. https://doi.org/10.1103/physrevlett.120.143001. https://www.osti.gov/servlets/purl/1541298.
@article{osti_1541298,
title = {Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics},
author = {Zhang, Linfeng and Han, Jiequn and Wang, Han and Car, Roberto and E, Weinan},
abstractNote = {We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.},
doi = {10.1103/physrevlett.120.143001},
journal = {Physical Review Letters},
number = 14,
volume = 120,
place = {United States},
year = {Wed Apr 04 00:00:00 EDT 2018},
month = {Wed Apr 04 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 713 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Accurate determination of crystal structures based on averaged local bond order parameters
journal, September 2008

  • Lechner, Wolfgang; Dellago, Christoph
  • The Journal of Chemical Physics, Vol. 129, Issue 11
  • DOI: 10.1063/1.2977970

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


A universal strategy for the creation of machine learning-based atomistic force fields
journal, September 2017


Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

Nosé–Hoover chains: The canonical ensemble via continuous dynamics
journal, August 1992

  • Martyna, Glenn J.; Klein, Michael L.; Tuckerman, Mark
  • The Journal of Chemical Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.463940

ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
journal, January 2017

  • Smith, J. S.; Isayev, O.; Roitberg, A. E.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/C6SC05720A

How van der Waals interactions determine the unique properties of water
journal, July 2016

  • Morawietz, Tobias; Singraber, Andreas; Dellago, Christoph
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 30
  • DOI: 10.1073/pnas.1602375113

Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals
journal, June 1984


Toward reliable density functional methods without adjustable parameters: The PBE0 model
journal, April 1999

  • Adamo, Carlo; Barone, Vincenzo
  • The Journal of Chemical Physics, Vol. 110, Issue 13
  • DOI: 10.1063/1.478522

ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
journal, March 2015


Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data
journal, February 2009


i-PI: A Python interface for ab initio path integral molecular dynamics simulations
journal, March 2014

  • Ceriotti, Michele; More, Joshua; Manolopoulos, David E.
  • Computer Physics Communications, Vol. 185, Issue 3
  • DOI: 10.1016/j.cpc.2013.10.027

GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit
journal, February 2013


DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
journal, July 2018


CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
journal, January 2009

  • Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.
  • Journal of Computational Chemistry
  • DOI: 10.1002/jcc.21367

Quantum Monte Carlo
journal, February 1986


Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


Perspective: Machine learning potentials for atomistic simulations
journal, November 2016

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 145, Issue 17
  • DOI: 10.1063/1.4966192

Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

Development and testing of a general amber force field
journal, January 2004

  • Wang, Junmei; Wolf, Romain M.; Caldwell, James W.
  • Journal of Computational Chemistry, Vol. 25, Issue 9
  • DOI: 10.1002/jcc.20035

Accelerating the convergence of path integral dynamics with a generalized Langevin equation
journal, February 2011

  • Ceriotti, Michele; Manolopoulos, David E.; Parrinello, Michele
  • The Journal of Chemical Physics, Vol. 134, Issue 8
  • DOI: 10.1063/1.3556661

Machine learning of accurate energy-conserving molecular force fields
journal, May 2017

  • Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.
  • Science Advances, Vol. 3, Issue 5
  • DOI: 10.1126/sciadv.1603015

Crystal Structure and Pair Potentials: A Molecular-Dynamics Study
journal, October 1980


Advanced capabilities for materials modelling with Quantum ESPRESSO
journal, October 2017

  • Giannozzi, P.; Andreussi, O.; Brumme, T.
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 46
  • DOI: 10.1088/1361-648X/aa8f79

Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
journal, January 2002

  • Brenner, Donald W.; Shenderova, Olga A.; Harrison, Judith A.
  • Journal of Physics: Condensed Matter, Vol. 14, Issue 4
  • DOI: 10.1088/0953-8984/14/4/312

Machine learning of accurate energy-conserving molecular force fields
text, January 2017


Advanced capabilities for materials modelling with Quantum ESPRESSO
text, January 2017


Fast and accurate modeling of molecular atomization energies with machine learning
text, January 2012

  • Rupp, Matthias; Tkatchenko, Alexandre; Müller, Klaus-Robert
  • American Physical Society
  • DOI: 10.5451/unibas-ep43360

ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
text, January 2017

  • ,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/bhbf-9r93

Gaussian Approximation Potentials: the accuracy of quantum mechanics, without the electrons
text, January 2009


Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
text, January 2011


i-PI: A Python interface for ab initio path integral molecular dynamics simulations
text, January 2014


Quantum-Chemical Insights from Deep Tensor Neural Networks
text, January 2016


Machine Learning of Accurate Energy-Conserving Molecular Force Fields
text, January 2016


Advanced capabilities for materials modelling with Quantum ESPRESSO
text, January 2017


Works referencing / citing this record:

A Critical Review of Machine Learning of Energy Materials
journal, January 2020


Simulating Diffusion Properties of Solid‐State Electrolytes via a Neural Network Potential: Performance and Training Scheme
journal, December 2019

  • Marcolongo, Aris; Binninger, Tobias; Zipoli, Federico
  • ChemSystemsChem, Vol. 2, Issue 3
  • DOI: 10.1002/syst.201900031

Towards exact molecular dynamics simulations with machine-learned force fields
journal, September 2018

  • Chmiela, Stefan; Sauceda, Huziel E.; Müller, Klaus-Robert
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06169-2

Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
journal, June 2019


Recent advances and applications of machine learning in solid-state materials science
journal, August 2019

  • Schmidt, Jonathan; Marques, Mário R. G.; Botti, Silvana
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0221-0

Fast, accurate, and transferable many-body interatomic potentials by symbolic regression
journal, November 2019

  • Hernandez, Alberto; Balasubramanian, Adarsh; Yuan, Fenglin
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0249-1

A fast neural network approach for direct covariant forces prediction in complex multi-element extended systems
journal, September 2019

  • Mailoa, Jonathan P.; Kornbluth, Mordechai; Batzner, Simon
  • Nature Machine Intelligence, Vol. 1, Issue 10
  • DOI: 10.1038/s42256-019-0098-0

DeePCG: Constructing coarse-grained models via deep neural networks
journal, July 2018

  • Zhang, Linfeng; Han, Jiequn; Wang, Han
  • The Journal of Chemical Physics, Vol. 149, Issue 3
  • DOI: 10.1063/1.5027645

Adaptive coupling of a deep neural network potential to a classical force field
journal, October 2018

  • Zhang, Linfeng; Wang, Han; E., Weinan
  • The Journal of Chemical Physics, Vol. 149, Issue 15
  • DOI: 10.1063/1.5042714

Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces
journal, March 2019

  • Sauceda, Huziel E.; Chmiela, Stefan; Poltavsky, Igor
  • The Journal of Chemical Physics, Vol. 150, Issue 11
  • DOI: 10.1063/1.5078687

A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules
journal, April 2019

  • Cheng, Lixue; Welborn, Matthew; Christensen, Anders S.
  • The Journal of Chemical Physics, Vol. 150, Issue 13
  • DOI: 10.1063/1.5088393

Atom-density representations for machine learning
journal, April 2019

  • Willatt, Michael J.; Musil, Félix; Ceriotti, Michele
  • The Journal of Chemical Physics, Vol. 150, Issue 15
  • DOI: 10.1063/1.5090481

Deep learning inter-atomic potential model for accurate irradiation damage simulations
journal, June 2019

  • Wang, Hao; Guo, Xun; Zhang, Linfeng
  • Applied Physics Letters, Vol. 114, Issue 24
  • DOI: 10.1063/1.5098061

Evaluation of experimental alkali metal ion–ligand noncovalent bond strengths with DLPNO-CCSD(T) method
journal, July 2019

  • Maity, Bholanath; Minenkov, Yury; Cavallo, Luigi
  • The Journal of Chemical Physics, Vol. 151, Issue 1
  • DOI: 10.1063/1.5099580

Compressing physics with an autoencoder: Creating an atomic species representation to improve machine learning models in the chemical sciences
journal, August 2019

  • Herr, John E.; Koh, Kevin; Yao, Kun
  • The Journal of Chemical Physics, Vol. 151, Issue 8
  • DOI: 10.1063/1.5108803

Guidelines for creating artificial neural network empirical interatomic potential from first-principles molecular dynamics data under specific conditions and its application to α-Ag 2 Se
journal, September 2019

  • Shimamura, Kohei; Fukushima, Shogo; Koura, Akihide
  • The Journal of Chemical Physics, Vol. 151, Issue 12
  • DOI: 10.1063/1.5116420

Machine learning for interatomic potential models
journal, February 2020

  • Mueller, Tim; Hernandez, Alberto; Wang, Chuhong
  • The Journal of Chemical Physics, Vol. 152, Issue 5
  • DOI: 10.1063/1.5126336

FCHL revisited: Faster and more accurate quantum machine learning
journal, January 2020

  • Christensen, Anders S.; Bratholm, Lars A.; Faber, Felix A.
  • The Journal of Chemical Physics, Vol. 152, Issue 4
  • DOI: 10.1063/1.5126701

Incorporating long-range physics in atomic-scale machine learning
journal, November 2019

  • Grisafi, Andrea; Ceriotti, Michele
  • The Journal of Chemical Physics, Vol. 151, Issue 20
  • DOI: 10.1063/1.5128375

Uniformly accurate machine learning-based hydrodynamic models for kinetic equations
journal, October 2019

  • Han, Jiequn; Ma, Chao; Ma, Zheng
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 44
  • DOI: 10.1073/pnas.1909854116

Isotope effects in liquid water via deep potential molecular dynamics
journal, October 2019


Machine learning and molecular design of self-assembling -conjugated oligopeptides
journal, April 2018


From DFT to machine learning: recent approaches to materials science–a review
journal, May 2019

  • Schleder, Gabriel R.; Padilha, Antonio C. M.; Acosta, Carlos Mera
  • Journal of Physics: Materials, Vol. 2, Issue 3
  • DOI: 10.1088/2515-7639/ab084b

Development of a deep machine learning interatomic potential for metalloid-containing Pd-Si compounds
journal, November 2019


Constructing convex energy landscapes for atomistic structure optimization
journal, December 2019


Machine-learning-based interatomic potential for phonon transport in perfect crystalline Si and crystalline Si with vacancies
journal, July 2019


Atomic energy mapping of neural network potential
journal, September 2019


Electronic structure at coarse-grained resolutions from supervised machine learning
journal, March 2019

  • Jackson, Nicholas E.; Bowen, Alec S.; Antony, Lucas W.
  • Science Advances, Vol. 5, Issue 3
  • DOI: 10.1126/sciadv.aav1190

High-repetition-rate femtosecond mid-infrared pulses generated by nonlinear optical modulation of continuous-wave QCLs and ICLs
journal, January 2019


De novo exploration and self-guided learning of potential-energy surfaces
text, January 2019

  • Bernstein, Noam; Csányi, Gábor; Deringer, Volker L.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.58436

Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers
journal, August 2019


Enumeration of de novo inorganic complexes for chemical discovery and machine learning
journal, January 2020

  • Gugler, Stefan; Janet, Jon Paul; Kulik, Heather J.
  • Molecular Systems Design & Engineering, Vol. 5, Issue 1
  • DOI: 10.1039/c9me00069k

Learning from the density to correct total energy and forces in first principle simulations
journal, October 2019

  • Dick, Sebastian; Fernandez-Serra, Marivi
  • The Journal of Chemical Physics, Vol. 151, Issue 14
  • DOI: 10.1063/1.5114618

Machine Learning a General-Purpose Interatomic Potential for Silicon
text, January 2018

  • Bartók, Ap; Kermode, J.; Bernstein, N.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.34909

DeePCG: constructing coarse-grained models via deep neural networks
text, January 2018


Adaptive coupling of a deep neural network potential to a classical force field
text, January 2018


Graph Dynamical Networks for Unsupervised Learning of Atomic Scale Dynamics in Materials
text, January 2019


Atomic energy mapping of neural network potential
text, January 2019


Isotope Effects in Liquid Water via Deep Potential Molecular Dynamics
text, January 2019


Machine-learning interatomic potential for radiation damage and defects in tungsten
text, January 2019


FCHL revisited: faster and more accurate quantum machine learning
text, January 2019


Incorporating long-range physics in atomic-scale machine learning
text, January 2019


Nonadiabatic Excited-State Dynamics with Machine Learning
journal, September 2018

  • Dral, Pavlo O.; Barbatti, Mario; Thiel, Walter
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 19
  • DOI: 10.1021/acs.jpclett.8b02469

Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
journal, June 2019


Reinforced dynamics for enhanced sampling in large atomic and molecular systems
journal, March 2018

  • Zhang, Linfeng; Wang, Han; E., Weinan
  • The Journal of Chemical Physics, Vol. 148, Issue 12
  • DOI: 10.1063/1.5019675

Electronic structure at coarse-grained resolutions from supervised machine learning
journal, March 2019

  • Jackson, Nicholas E.; Bowen, Alec S.; Antony, Lucas W.
  • Science Advances, Vol. 5, Issue 3
  • DOI: 10.1126/sciadv.aav1190