DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spinel LiNi0.5Mn1.5O4 Cathode for High-Energy Aqueous Lithium-Ion Batteries

Abstract

A 2.9 V intrinsic safe aqueous LiNi0.5Mn1.5O4/Mo6S8 full cell delivers 80 W h kg-1 energy density with capacity decay of 0.075% per cycle (5 C). After the electrolyte pH value adjustment, almost full capacity of LiNi0.5Mn1.5O4 (125 mA h kg-1) is achieved, and 126 W h kg-1 energy density is provided for LiNi0.5Mn1.5O4/Mo6S8 cell, representing one of the highest voltage and energy density among all the aqueous batteries.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering
Publication Date:
Research Org.:
Univ. of Maryland, College Park, MD (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1533058
Alternate Identifier(s):
OSTI ID: 1401255
Grant/Contract Number:  
AR0000389
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 7; Journal Issue: 8; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; aqueous lithium-ion batteries; high energy density; high voltage; LiNi0.5Mn1.5O4; water-in-salt electrolyte

Citation Formats

Wang, Fei, Suo, Liumin, Liang, Yujia, Yang, Chongyin, Han, Fudong, Gao, Tao, Sun, Wei, and Wang, Chunsheng. Spinel LiNi0.5Mn1.5O4 Cathode for High-Energy Aqueous Lithium-Ion Batteries. United States: N. p., 2016. Web. doi:10.1002/aenm.201600922.
Wang, Fei, Suo, Liumin, Liang, Yujia, Yang, Chongyin, Han, Fudong, Gao, Tao, Sun, Wei, & Wang, Chunsheng. Spinel LiNi0.5Mn1.5O4 Cathode for High-Energy Aqueous Lithium-Ion Batteries. United States. https://doi.org/10.1002/aenm.201600922
Wang, Fei, Suo, Liumin, Liang, Yujia, Yang, Chongyin, Han, Fudong, Gao, Tao, Sun, Wei, and Wang, Chunsheng. Wed . "Spinel LiNi0.5Mn1.5O4 Cathode for High-Energy Aqueous Lithium-Ion Batteries". United States. https://doi.org/10.1002/aenm.201600922. https://www.osti.gov/servlets/purl/1533058.
@article{osti_1533058,
title = {Spinel LiNi0.5Mn1.5O4 Cathode for High-Energy Aqueous Lithium-Ion Batteries},
author = {Wang, Fei and Suo, Liumin and Liang, Yujia and Yang, Chongyin and Han, Fudong and Gao, Tao and Sun, Wei and Wang, Chunsheng},
abstractNote = {A 2.9 V intrinsic safe aqueous LiNi0.5Mn1.5O4/Mo6S8 full cell delivers 80 W h kg-1 energy density with capacity decay of 0.075% per cycle (5 C). After the electrolyte pH value adjustment, almost full capacity of LiNi0.5Mn1.5O4 (125 mA h kg-1) is achieved, and 126 W h kg-1 energy density is provided for LiNi0.5Mn1.5O4/Mo6S8 cell, representing one of the highest voltage and energy density among all the aqueous batteries.},
doi = {10.1002/aenm.201600922},
journal = {Advanced Energy Materials},
number = 8,
volume = 7,
place = {United States},
year = {Wed Dec 14 00:00:00 EST 2016},
month = {Wed Dec 14 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 112 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes
journal, June 2013

  • Chen, Liang; Gu, Qingwen; Zhou, Xufeng
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01946

Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries
journal, December 2011

  • Wessells, Colin D.; Peddada, Sandeep V.; Huggins, Robert A.
  • Nano Letters, Vol. 11, Issue 12, p. 5421-5425
  • DOI: 10.1021/nl203193q

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

LiTFSI Stability in Water and Its Possible Use in Aqueous Lithium-Ion Batteries: pH Dependency, Electrochemical Window and Temperature Stability
journal, January 2013

  • Lux, S. F.; Terborg, L.; Hachmöller, O.
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.039310jes

Hydrate-melt electrolytes for high-energy-density aqueous batteries
journal, August 2016


Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms
journal, January 2014

  • McOwen, Dennis W.; Seo, Daniel M.; Borodin, Oleg
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42351D

A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries
journal, January 2014

  • Manthiram, Arumugam; Chemelewski, Katharine; Lee, Eun-Sung
  • Energy & Environmental Science, Vol. 7, Issue 4
  • DOI: 10.1039/c3ee42981d

Aqueous Rechargeable Li and Na Ion Batteries
journal, September 2014

  • Kim, Haegyeom; Hong, Jihyun; Park, Kyu-Young
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500232y

Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Intercalated Compounds
journal, January 2006

  • Wang, Yong-gang; Xia, Yong-yao
  • Journal of The Electrochemical Society, Vol. 153, Issue 2
  • DOI: 10.1149/1.2140678

Comparative study of different crystallographic structure of LiNi0.5Mn1.5O4−δ cathodes with wide operation voltage (2.0–5.0V)
journal, September 2007


High-Performance LiNi 0.5 Mn 1.5 O 4 Spinel Controlled by Mn 3+ Concentration and Site Disorder
journal, March 2012


Rechargeable batteries with aqueous electrolytes
journal, May 2000


Aqueous rechargeable alkali-ion batteries with polyimide anode
journal, March 2014


Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries
journal, March 2014

  • Yamada, Yuki; Furukawa, Keizo; Sodeyama, Keitaro
  • Journal of the American Chemical Society, Vol. 136, Issue 13, p. 5039-5046
  • DOI: 10.1021/ja412807w

Role of Oxygen Vacancies on the Performance of Li[Ni 0.5– x Mn 1.5+ x ]O 4 ( x = 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries
journal, July 2012

  • Song, Jie; Shin, Dong Wook; Lu, Yuhao
  • Chemistry of Materials, Vol. 24, Issue 15
  • DOI: 10.1021/cm301825h

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Electrochemical properties of TiP2O7 and LiTi2(PO4)3 as anode material for lithium ion battery with aqueous solution electrolyte
journal, February 2007


Batteries fifty years of materials development
journal, October 2000


"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Comparative Study of LiNi 0.5 Mn 1.5 O 4 - δ and LiNi 0.5 Mn 1.5 O 4 Cathodes Having Two Crystallographic Structures:  Fdm and P 4 3 32
journal, March 2004

  • Kim, J. -H.; Myung, S. -T.; Yoon, C. S.
  • Chemistry of Materials, Vol. 16, Issue 5
  • DOI: 10.1021/cm035050s

A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery
journal, September 2011

  • Jung, Hun-Gi; Jang, Min Woo; Hassoun, Jusef
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1527

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
journal, January 2012

  • Pasta, Mauro; Wessells, Colin D.; Huggins, Robert A.
  • Nature Communications, Vol. 3, Issue 1, Article No. 1149
  • DOI: 10.1038/ncomms2139

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Rechargeable Aqueous Lithium-Ion Battery of TiO2∕LiMn2O4 with a High Voltage
journal, January 2011

  • Liu, S.; Ye, S. H.; Li, C. Z.
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.094112jes

Recent Progress in Aqueous Lithium-Ion Batteries
journal, June 2012

  • Wang, Yonggang; Yi, Jin; Xia, Yongyao
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201200065

Lithium Intercalation from Aqueous Solutions
journal, January 1994

  • Li, W.
  • Journal of The Electrochemical Society, Vol. 141, Issue 9
  • DOI: 10.1149/1.2055118

Rechargeable Lithium Batteries with Aqueous Electrolytes
journal, May 1994


Electrochemical Intercalation of Lithium Ion within Graphite from Propylene Carbonate Solutions
journal, January 2003

  • Jeong, Soon-Ki; Inaba, Minoru; Iriyama, Yasutoshi
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 1
  • DOI: 10.1149/1.1526781

Aqueous rechargeable lithium batteries as an energy storage system of superfast charging
journal, January 2013

  • Tang, Wei; Zhu, Yusong; Hou, Yuyang
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee24249h

Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte
journal, August 2010

  • Luo, Jia-Yan; Cui, Wang-Jun; He, Ping
  • Nature Chemistry, Vol. 2, Issue 9
  • DOI: 10.1038/nchem.763

Works referencing / citing this record:

Atomic-Scale Observation of LiFePO 4 and LiCoO 2 Dissolution Behavior in Aqueous Solutions
journal, September 2018

  • Byeon, Pilgyu; Bae, Hyung Bin; Chung, Hee-Suk
  • Advanced Functional Materials, Vol. 28, Issue 45
  • DOI: 10.1002/adfm.201804564

Development of High-Voltage Aqueous Electrochemical Energy Storage Devices
journal, July 2017


Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications
journal, March 2017

  • Zheng, Jianming; Lochala, Joshua A.; Kwok, Alexander
  • Advanced Science, Vol. 4, Issue 8
  • DOI: 10.1002/advs.201700032

Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices
journal, December 2017

  • Pang, Jinbo; Bachmatiuk, Alicja; Yin, Yin
  • Advanced Energy Materials, Vol. 8, Issue 8
  • DOI: 10.1002/aenm.201702093

High-Energy Aqueous Lithium Batteries
journal, June 2018


Improving Electrochemical Stability and Low‐Temperature Performance with Water/Acetonitrile Hybrid Electrolytes
journal, November 2019

  • Chen, Jiawei; Vatamanu, Jenel; Xing, Lidan
  • Advanced Energy Materials, Vol. 10, Issue 3
  • DOI: 10.1002/aenm.201902654

Atomic-Scale Direct Identification of Surface Variations in Cathode Oxides for Aqueous and Nonaqueous Lithium-Ion Batteries
journal, January 2019


A High‐Rate and Long‐Life Aqueous Rechargeable Ammonium Zinc Hybrid Battery
journal, July 2019


Electrochemical Performance of Structure-Dependent LiNi 1/3 Co 1/3 Mn 1/3 O 2 in Aqueous Rechargeable Lithium-Ion Batteries
journal, January 2018


Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes
journal, September 2018


Lab‐Scale In Situ X‐Ray Diffraction Technique for Different Battery Systems: Designs, Applications, and Perspectives
journal, May 2019


Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives
journal, August 2019


Exploring the origin of electrochemical performance of Cr-doped LiNi 0.5 Mn 1.5 O 4
journal, January 2020

  • Li, Fei; Ma, Jiani; Lin, Jianyan
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 7
  • DOI: 10.1039/c9cp06545h

Voltage issue of aqueous rechargeable metal-ion batteries
journal, January 2020

  • Liu, Zhuoxin; Huang, Yan; Huang, Yang
  • Chemical Society Reviews, Vol. 49, Issue 1
  • DOI: 10.1039/c9cs00131j

Mn 2 O 3 /Al 2 O 3 cathode material derived from a metal–organic framework with enhanced cycling performance for aqueous zinc-ion batteries
journal, January 2020

  • Gou, Lei; Mou, Ke-Liang; Fan, Xiao-Yong
  • Dalton Transactions, Vol. 49, Issue 3
  • DOI: 10.1039/c9dt03995c

Rechargeable aqueous hybrid ion batteries: developments and prospects
journal, January 2019

  • Ao, Huaisheng; Zhao, Yingyue; Zhou, Jie
  • Journal of Materials Chemistry A, Vol. 7, Issue 32
  • DOI: 10.1039/c9ta06433h