DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide

Abstract

Electrochemical synthesis of hydrogen peroxide (H2O2) via two-electron water oxidation reaction (2e-WOR) is an ideal process for delocalized production for water cleaning and other applications. Previously observed water oxidation catalysts have limited activity and selectivity, imposing a bottleneck for broad adoption of this technology. We determine ZnO as a new stable, nontoxic, active, and selective catalyst for 2e-WOR to generate H2O2. Using density functional theory calculations, we propose that the (1010) facet of ZnO is an effective catalyst for 2e-WOR and confirm the prediction experimentally. We synthesize ZnO nanoparticles with a high fraction of (1010) facets and find that this catalyst gives an overpotential of 40 mV at 0.1 mA/cm2 and peak Faradaic efficiency of 81% toward H2O2 evolution.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1];  [4]
  1. Stanford Univ., CA (United States)
  2. Stanford Univ., CA (United States); Sungkyunkwan Univ., Suwon (Republic of Korea)
  3. Stanford Univ., CA (United States); Univ. of Calgary, AB (Canada)
  4. Stanford Univ., CA (United States) ; SLAC National Accelerator Lab., Menlo Park, CA (United States); Technical Univ. of Denmark, Lyngby (Denmark)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1529320
Grant/Contract Number:  
AC02-76SF00515; SC0008685
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 9; Journal Issue: 5; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; water oxidation catalysis; hydrogen peroxide synthesis; zinc oxide; density functional theory; electrocatalysis

Citation Formats

Kelly, Sara R., Shi, Xinjian, Back, Seoin, Vallez, Lauren, Park, So Yeon, Siahrostami, Samira, Zheng, Xiaolin, and Nørskov, Jens K. ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide. United States: N. p., 2019. Web. doi:10.1021/acscatal.8b04873.
Kelly, Sara R., Shi, Xinjian, Back, Seoin, Vallez, Lauren, Park, So Yeon, Siahrostami, Samira, Zheng, Xiaolin, & Nørskov, Jens K. ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide. United States. https://doi.org/10.1021/acscatal.8b04873
Kelly, Sara R., Shi, Xinjian, Back, Seoin, Vallez, Lauren, Park, So Yeon, Siahrostami, Samira, Zheng, Xiaolin, and Nørskov, Jens K. Thu . "ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide". United States. https://doi.org/10.1021/acscatal.8b04873. https://www.osti.gov/servlets/purl/1529320.
@article{osti_1529320,
title = {ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide},
author = {Kelly, Sara R. and Shi, Xinjian and Back, Seoin and Vallez, Lauren and Park, So Yeon and Siahrostami, Samira and Zheng, Xiaolin and Nørskov, Jens K.},
abstractNote = {Electrochemical synthesis of hydrogen peroxide (H2O2) via two-electron water oxidation reaction (2e-WOR) is an ideal process for delocalized production for water cleaning and other applications. Previously observed water oxidation catalysts have limited activity and selectivity, imposing a bottleneck for broad adoption of this technology. We determine ZnO as a new stable, nontoxic, active, and selective catalyst for 2e-WOR to generate H2O2. Using density functional theory calculations, we propose that the (1010) facet of ZnO is an effective catalyst for 2e-WOR and confirm the prediction experimentally. We synthesize ZnO nanoparticles with a high fraction of (1010) facets and find that this catalyst gives an overpotential of 40 mV at 0.1 mA/cm2 and peak Faradaic efficiency of 81% toward H2O2 evolution.},
doi = {10.1021/acscatal.8b04873},
journal = {ACS Catalysis},
number = 5,
volume = 9,
place = {United States},
year = {Thu Apr 11 00:00:00 EDT 2019},
month = {Thu Apr 11 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 108 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Global Hydrological Cycles and World Water Resources
journal, August 2006


Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen
journal, August 1998


Direct Synthesis of Hydrogen Peroxide Over Au–Pd Catalysts Prepared by Electroless Deposition
journal, September 2015

  • Alba-Rubio, Ana C.; Plauck, Anthony; Stangland, Eric E.
  • Catalysis Letters, Vol. 145, Issue 12
  • DOI: 10.1007/s10562-015-1621-5

Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process
journal, February 2009


Unifying the 2e and 4e Reduction of Oxygen on Metal Surfaces
journal, September 2012

  • Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
  • DOI: 10.1021/jz301476w

Enabling direct H2O2 production through rational electrocatalyst design
journal, November 2013

  • Siahrostami, Samira; Verdaguer-Casadevall, Arnau; Karamad, Mohammadreza
  • Nature Materials, Vol. 12, Issue 12
  • DOI: 10.1038/nmat3795

Trends in the Electrochemical Synthesis of H 2 O 2 : Enhancing Activity and Selectivity by Electrocatalytic Site Engineering
journal, February 2014

  • Verdaguer-Casadevall, Arnau; Deiana, Davide; Karamad, Mohammadreza
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl500037x

Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide
journal, May 2018

  • Chen, Shucheng; Chen, Zhihua; Siahrostami, Samira
  • Journal of the American Chemical Society, Vol. 140, Issue 25
  • DOI: 10.1021/jacs.8b02798

Defective Carbon-Based Materials for the Electrochemical Synthesis of Hydrogen Peroxide
journal, November 2017


Toward the Decentralized Electrochemical Production of H 2 O 2 : A Focus on the Catalysis
journal, March 2018

  • Yang, Sungeun; Verdaguer-Casadevall, Arnau; Arnarson, Logi
  • ACS Catalysis, Vol. 8, Issue 5
  • DOI: 10.1021/acscatal.8b00217

Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis
journal, January 2015

  • Hong, Wesley T.; Risch, Marcel; Stoerzinger, Kelsey A.
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C4EE03869J

An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen
journal, August 2013

  • Louie, Mary W.; Bell, Alexis T.
  • Journal of the American Chemical Society, Vol. 135, Issue 33
  • DOI: 10.1021/ja405351s

Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

Homogeneously dispersed multimetal oxygen-evolving catalysts
journal, March 2016


Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0–14: The Thermodynamic Basis for Catalyst Structure, Stability, and Activity
journal, August 2011

  • Gerken, James B.; McAlpin, J. Gregory; Chen, Jamie Y. C.
  • Journal of the American Chemical Society, Vol. 133, Issue 36
  • DOI: 10.1021/ja205647m

Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation
journal, October 2015

  • Viswanathan, Venkatasubramanian; Hansen, Heine A.; Nørskov, Jens K.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 21
  • DOI: 10.1021/acs.jpclett.5b02178

Enhanced Oxidative Hydrogen Peroxide Production on Conducting Glass Anodes Modified with Metal Oxides
journal, November 2016


Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide
journal, September 2017


CaSnO 3 : An Electrocatalyst for Two-Electron Water Oxidation Reaction to Form H 2 O 2
journal, December 2018


One- or Two-Electron Water Oxidation, Hydroxyl Radical, or H 2 O 2 Evolution
journal, February 2017

  • Siahrostami, Samira; Li, Guo-Ling; Viswanathan, Venkatasubramanian
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 6
  • DOI: 10.1021/acs.jpclett.6b02924

Photochemical Synthesis of Hydrogen Peroxide at Zinc Oxide Surfaces 1
journal, June 1953

  • Rubin, Thor R.; Calvert, Jack G.; Rankin, George T.
  • Journal of the American Chemical Society, Vol. 75, Issue 12
  • DOI: 10.1021/ja01108a017

H2O2 Formation from photocatalytic processes at the ZnO/water interface
journal, July 2001

  • Domènech, Xavier; Ayllón, José Antonio; Peral, José
  • Environmental Science and Pollution Research, Vol. 8, Issue 4
  • DOI: 10.1007/BF02987409

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
journal, March 1999


Projector augmented-wave method
journal, December 1994


A Linear Response DFT+ U Study of Trends in the Oxygen Evolution Activity of Transition Metal Rutile Dioxides
journal, February 2015

  • Xu, Zhongnan; Rossmeisl, Jan; Kitchin, John R.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 9
  • DOI: 10.1021/jp511426q

Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0001)
journal, January 2014


Ferromagnetic behavior of high-purity ZnO nanoparticles
journal, January 2011


The chemistry and physics of zinc oxide surfaces
journal, January 2007


Competing stabilization mechanism for the polar ZnO(0001)-Zn surface
journal, December 2003


Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
journal, February 2014

  • Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra
  • The Journal of Chemical Physics, Vol. 140, Issue 8
  • DOI: 10.1063/1.4865107

Influence of Adsorbed Water on the Oxygen Evolution Reaction on Oxides
journal, December 2014

  • Siahrostami, S.; Vojvodic, A.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 2
  • DOI: 10.1021/jp508932x

Solvation Effects for Oxygen Evolution Reaction Catalysis on IrO 2 (110)
journal, May 2017

  • Gauthier, Joseph A.; Dickens, Colin F.; Chen, Leanne D.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 21
  • DOI: 10.1021/acs.jpcc.7b02383

Tailoring the Activity for Oxygen Evolution Electrocatalysis on Rutile TiO2(110) by Transition-Metal Substitution
journal, August 2011

  • García-Mota, Mónica; Vojvodic, Aleksandra; Metiu, Horia
  • ChemCatChem, Vol. 3, Issue 10
  • DOI: 10.1002/cctc.201100160

Effects of Anions and pH on the Stability of ZnO Nanorods for Photoelectrochemical Water Splitting
journal, March 2018


Works referencing / citing this record:

Electrochemical H 2 O 2 Production and Accumulation from H 2 O by Composite Effect of Al 2 O 3 and BiVO 4
journal, January 2019

  • Miyase, Yuta; Iguchi, Shoji; Miseki, Yugo
  • Journal of The Electrochemical Society, Vol. 166, Issue 13
  • DOI: 10.1149/2.0561913jes

Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide
journal, January 2020


Hydrogen peroxide electrochemical synthesis on hybrid double-atom (Pd–Cu) doped N vacancy g-C 3 N 4 : a novel design strategy for electrocatalyst screening
journal, January 2020

  • Cao, Yongyong; Zhao, Chenxia; Fang, Qiaojun
  • Journal of Materials Chemistry A, Vol. 8, Issue 5
  • DOI: 10.1039/c9ta12468c