DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Selective electrochemical generation of hydrogen peroxide from water oxidation

Abstract

Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.

Authors:
 [1];  [2];  [3]
  1. Carnegie Mellon Univ., Pittsburgh, PA (United States); Stanford Univ., Stanford, CA (United States)
  2. Technical Univ. of Denmark, Lyngby (Denmark); Stanford Univ., Stanford, CA (United States)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1263404
Report Number(s):
SLAC-PUB-16634
Journal ID: ISSN 1948-7185; arXiv:1509.07444
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Volume: 6; Journal Issue: 21; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; PHYS

Citation Formats

Viswanathan, Venkatasubramanian, Hansen, Heine A., and Norskov, Jens K. Selective electrochemical generation of hydrogen peroxide from water oxidation. United States: N. p., 2015. Web. doi:10.1021/acs.jpclett.5b02178.
Viswanathan, Venkatasubramanian, Hansen, Heine A., & Norskov, Jens K. Selective electrochemical generation of hydrogen peroxide from water oxidation. United States. https://doi.org/10.1021/acs.jpclett.5b02178
Viswanathan, Venkatasubramanian, Hansen, Heine A., and Norskov, Jens K. Thu . "Selective electrochemical generation of hydrogen peroxide from water oxidation". United States. https://doi.org/10.1021/acs.jpclett.5b02178. https://www.osti.gov/servlets/purl/1263404.
@article{osti_1263404,
title = {Selective electrochemical generation of hydrogen peroxide from water oxidation},
author = {Viswanathan, Venkatasubramanian and Hansen, Heine A. and Norskov, Jens K.},
abstractNote = {Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H2O2 and the 4e– oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively.},
doi = {10.1021/acs.jpclett.5b02178},
journal = {Journal of Physical Chemistry Letters},
number = 21,
volume = 6,
place = {United States},
year = {Thu Oct 08 00:00:00 EDT 2015},
month = {Thu Oct 08 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 108 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Not Just a Drop in the Bucket: Expanding Access to Point-of-Use Water Treatment Systems
journal, October 2001

  • Mintz, Eric; Bartram, Jamie; Lochery, Peter
  • American Journal of Public Health, Vol. 91, Issue 10
  • DOI: 10.2105/AJPH.91.10.1565

Oxidation behavior of aqueous contaminants in the presence of hydrogen peroxide and filter media
journal, April 1995


Micropollutants Produced by Disinfection of Wastewater Effluents*
journal, December 1982

  • Jolley, R. L.; Cumming, R. B.; Lee, N. E.
  • Water Science and Technology, Vol. 14, Issue 12
  • DOI: 10.2166/wst.1982.0033

Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process
journal, October 2006

  • Campos-Martin, Jose M.; Blanco-Brieva, Gema; Fierro, Jose L. G.
  • Angewandte Chemie International Edition, Vol. 45, Issue 42
  • DOI: 10.1002/anie.200503779

Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts
journal, April 2003

  • Landon, Philip; Collier, Paul J.; Carley, Albert F.
  • Physical Chemistry Chemical Physics, Vol. 5, Issue 9
  • DOI: 10.1039/b211338b

Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process
journal, February 2009


Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions
journal, January 2002


Oxygen electrocatalysis in alkaline electrolyte: Pt(hkl), Au(hkl) and the effect of Pd-modification
journal, August 2002


Unifying the 2e and 4e Reduction of Oxygen on Metal Surfaces
journal, September 2012

  • Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
  • DOI: 10.1021/jz301476w

Enabling direct H2O2 production through rational electrocatalyst design
journal, November 2013

  • Siahrostami, Samira; Verdaguer-Casadevall, Arnau; Karamad, Mohammadreza
  • Nature Materials, Vol. 12, Issue 12
  • DOI: 10.1038/nmat3795

Trends in the Electrochemical Synthesis of H 2 O 2 : Enhancing Activity and Selectivity by Electrocatalytic Site Engineering
journal, February 2014

  • Verdaguer-Casadevall, Arnau; Deiana, Davide; Karamad, Mohammadreza
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl500037x

Use of Gas Diffusion Electrode for the In Situ Generation of Hydrogen Peroxide in an Electrochemical Flow-By Reactor
journal, June 2011

  • Reis, Rafael M.; Beati, André A. G. F.; Rocha, Robson S.
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 2
  • DOI: 10.1021/ie201317u

Azobenzene-modified oxygen-fed graphite/PTFE electrodes for hydrogen peroxide synthesis
journal, January 2007

  • Forti, J. C.; Nunes, J. A.; Lanza, M. R. V.
  • Journal of Applied Electrochemistry, Vol. 37, Issue 4
  • DOI: 10.1007/s10800-006-9285-x

A small-scale pilot plant using an oxygen-reducing gas-diffusion electrode for hydrogen peroxide electrosynthesis
journal, December 2008


Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert-butyl-anthraquinone on carbon black support
journal, September 2013


Application of SECM in tracing of hydrogen peroxide at multicomponent non-noble electrocatalyst films for the oxygen reduction reaction
journal, March 2013


Unifying Kinetic and Thermodynamic Analysis of 2 e and 4 e Reduction of Oxygen on Metal Surfaces
journal, March 2014

  • Hansen, Heine A.; Viswanathan, Venkatasubramanian; Nørskov, Jens K.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 13
  • DOI: 10.1021/jp4100608

Electrolysis of water on oxide surfaces
journal, September 2007


Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

Water Oxidation on Pure and Doped Hematite (0001) Surfaces: Prediction of Co and Ni as Effective Dopants for Electrocatalysis
journal, August 2012

  • Liao, Peilin; Keith, John A.; Carter, Emily A.
  • Journal of the American Chemical Society, Vol. 134, Issue 32
  • DOI: 10.1021/ja301567f

Modeling the Oxygen Evolution Reaction on Metal Oxides: The Infuence of Unrestricted DFT Calculations
journal, February 2014

  • Mom, Rik V.; Cheng, Jun; Koper, Marc T. M.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 8
  • DOI: 10.1021/jp409373c

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces
journal, July 2012

  • Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan
  • ACS Catalysis, Vol. 2, Issue 8
  • DOI: 10.1021/cs300227s

First-principles computational electrochemistry: Achievements and challenges
journal, December 2012


Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory
journal, January 2012

  • Valdés, Álvaro; Brillet, Jeremie; Grätzel, Michael
  • Phys. Chem. Chem. Phys., Vol. 14, Issue 1
  • DOI: 10.1039/C1CP23212F

Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis
journal, September 2011


Low overpotential water oxidation to hydrogen peroxide on a MnOx catalyst
journal, January 2012

  • Izgorodin, Alex; Izgorodina, Ekaterina; MacFarlane, Douglas R.
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee21832a

Ion effects in water oxidation to hydrogen peroxide
journal, January 2014

  • McDonnell-Worth, Ciaran; MacFarlane, Douglas. R.
  • RSC Advances, Vol. 4, Issue 58
  • DOI: 10.1039/C4RA05296J

Photogeneration of hydrogen peroxide in aqueous TiO 2 dispersions
journal, January 1985

  • Harbour, John R.; Tromp, John; Hair, Michael L.
  • Canadian Journal of Chemistry, Vol. 63, Issue 1
  • DOI: 10.1139/v85-032

Sunscreens as a Source of Hydrogen Peroxide Production in Coastal Waters
journal, August 2014

  • Sánchez-Quiles, David; Tovar-Sánchez, Antonio
  • Environmental Science & Technology, Vol. 48, Issue 16
  • DOI: 10.1021/es5020696

Electrochemistry and environment: The role of electrocatalysis*1
journal, October 1995


Electrochemical waste water treatment using high overvoltage anodes Part II: Anode performance and applications
journal, February 1991

  • Stucki, S.; K�tz, R.; Carcer, B.
  • Journal of Applied Electrochemistry, Vol. 21, Issue 2
  • DOI: 10.1007/BF01464288

Tailoring the Activity for Oxygen Evolution Electrocatalysis on Rutile TiO2(110) by Transition-Metal Substitution
journal, August 2011

  • García-Mota, Mónica; Vojvodic, Aleksandra; Metiu, Horia
  • ChemCatChem, Vol. 3, Issue 10
  • DOI: 10.1002/cctc.201100160

Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts
journal, May 2012

  • Subbaraman, Ram; Tripkovic, Dusan; Chang, Kee-Chul
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3313

Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments
journal, July 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee-Chul
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz501061n

Works referencing / citing this record:

Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide
journal, January 2020


Development of semi-continuous chemo-enzymatic terpene epoxidation: combination of anthraquinone autooxidation and the lipase-mediated epoxidation process
journal, January 2017

  • Ranganathan, Sumanth; Sieber, Volker
  • Reaction Chemistry & Engineering, Vol. 2, Issue 6
  • DOI: 10.1039/c7re00112f

Solar‐Driven Production of Hydrogen Peroxide from Water and Dioxygen
journal, February 2018

  • Fukuzumi, Shunichi; Lee, Yong‐Min; Nam, Wonwoo
  • Chemistry – A European Journal, Vol. 24, Issue 20
  • DOI: 10.1002/chem.201704512

Selective Electrochemical H 2 O 2 Production through Two-Electron Oxygen Electrochemistry
journal, September 2018

  • Jiang, Yuanyuan; Ni, Pengjuan; Chen, Chuanxia
  • Advanced Energy Materials, Vol. 8, Issue 31
  • DOI: 10.1002/aenm.201801909

A highly efficient photoelectrochemical H 2 O 2 production reaction with Co 3 O 4 as a co-catalyst
journal, January 2018

  • Zhang, Jijie; Chang, Xiaoxia; Luo, Zhibin
  • Chemical Communications, Vol. 54, Issue 51
  • DOI: 10.1039/c8cc03303j

Light-Driven BiVO 4 -C Fuel Cell with Simultaneous Production of H 2 O 2
journal, June 2018

  • Shi, Xinjian; Zhang, Yirui; Siahrostami, Samira
  • Advanced Energy Materials, Vol. 8, Issue 23
  • DOI: 10.1002/aenm.201801158

Quantifying robustness of DFT predicted pathways and activity determining elementary steps for electrochemical reactions
journal, January 2019

  • Krishnamurthy, Dilip; Sumaria, Vaidish; Viswanathan, Venkatasubramanian
  • The Journal of Chemical Physics, Vol. 150, Issue 4
  • DOI: 10.1063/1.5056167

Electrochemical synthesis of hydrogen peroxide from water and oxygen
journal, June 2019

  • Perry, Samuel C.; Pangotra, Dhananjai; Vieira, Luciana
  • Nature Reviews Chemistry, Vol. 3, Issue 7
  • DOI: 10.1038/s41570-019-0110-6

Sustainable Electrochemical Depolymerization of Lignin in Reusable Ionic Liquids
journal, July 2017


Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide
journal, September 2017


Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide
text, January 2017


Substrate oxidation enhances the electrochemical production of hydrogen peroxide
journal, October 2019


Potential of Plasmon-Activated Water as a Comprehensive Active Green Energy Resource
journal, May 2019


Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide
journal, September 2017


Sustainable Electrochemical Depolymerization of Lignin in Reusable Ionic Liquids
collection, January 2017

  • Dier, Tobias K. F.; Rauber, Daniel; Durneata, Dan
  • Universität des Saarlandes
  • DOI: 10.22028/d291-39313

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide
journal, March 2020

  • Yeddala, Munaiah; Thakur, Pallavi; A., Anugraha
  • Beilstein Journal of Nanotechnology, Vol. 11
  • DOI: 10.3762/bjnano.11.34