DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonplanar Electrode Architectures for Ultrahigh Areal Capacity Batteries

Abstract

Here, we report on the design of a battery electrode architecture in which ion and electronic transport pathways are continuous, and span the entire volume of a thick, non-planar electrode. It is shown that for a range of active materials conductivities, the length scale for electronic transport in such an architecture can be tuned by simple manipulations of the electrode design to enable good access to the active material. The benefits of such electrodes for basic science research and practical lithium metal batteries are demonstrated in low-N:P ratio cells in which a conventional (300- 800 μm) Li foil is successfully cycled with LiCoO2 cathodes with high areal capacities (10- 28 mAh/cm2).

Authors:
 [1];  [1];  [1];  [1];  [2];  [3];  [3];  [3];  [2]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [1]
  1. Cornell Univ., Ithaca, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. State Univ. of New York at Stony Brook, Stony Brook, NY (United States)
  4. Brookhaven National Lab. (BNL), Upton, NY (United States); State Univ. of New York at Stony Brook, Stony Brook, NY (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2mt); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1495007
Report Number(s):
BNL-211271-2019-JAAM
Journal ID: ISSN 2380-8195
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 4; Journal Issue: 1; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Zheng, Jingxu, Zhao, Qing, Liu, Xiaotun, Tang, Tian, Bock, David C., Bruck, Andrea M., Tallman, Killian R., Housel, Lisa M., Kiss, Andrew M., Marschilok, Amy C., Takeuchi, Esther S., Takeuchi, Kenneth J., and Archer, Lynden A. Nonplanar Electrode Architectures for Ultrahigh Areal Capacity Batteries. United States: N. p., 2018. Web. doi:10.1021/acsenergylett.8b02131.
Zheng, Jingxu, Zhao, Qing, Liu, Xiaotun, Tang, Tian, Bock, David C., Bruck, Andrea M., Tallman, Killian R., Housel, Lisa M., Kiss, Andrew M., Marschilok, Amy C., Takeuchi, Esther S., Takeuchi, Kenneth J., & Archer, Lynden A. Nonplanar Electrode Architectures for Ultrahigh Areal Capacity Batteries. United States. https://doi.org/10.1021/acsenergylett.8b02131
Zheng, Jingxu, Zhao, Qing, Liu, Xiaotun, Tang, Tian, Bock, David C., Bruck, Andrea M., Tallman, Killian R., Housel, Lisa M., Kiss, Andrew M., Marschilok, Amy C., Takeuchi, Esther S., Takeuchi, Kenneth J., and Archer, Lynden A. Thu . "Nonplanar Electrode Architectures for Ultrahigh Areal Capacity Batteries". United States. https://doi.org/10.1021/acsenergylett.8b02131. https://www.osti.gov/servlets/purl/1495007.
@article{osti_1495007,
title = {Nonplanar Electrode Architectures for Ultrahigh Areal Capacity Batteries},
author = {Zheng, Jingxu and Zhao, Qing and Liu, Xiaotun and Tang, Tian and Bock, David C. and Bruck, Andrea M. and Tallman, Killian R. and Housel, Lisa M. and Kiss, Andrew M. and Marschilok, Amy C. and Takeuchi, Esther S. and Takeuchi, Kenneth J. and Archer, Lynden A.},
abstractNote = {Here, we report on the design of a battery electrode architecture in which ion and electronic transport pathways are continuous, and span the entire volume of a thick, non-planar electrode. It is shown that for a range of active materials conductivities, the length scale for electronic transport in such an architecture can be tuned by simple manipulations of the electrode design to enable good access to the active material. The benefits of such electrodes for basic science research and practical lithium metal batteries are demonstrated in low-N:P ratio cells in which a conventional (300- 800 μm) Li foil is successfully cycled with LiCoO2 cathodes with high areal capacities (10- 28 mAh/cm2).},
doi = {10.1021/acsenergylett.8b02131},
journal = {ACS Energy Letters},
number = 1,
volume = 4,
place = {United States},
year = {Thu Dec 13 00:00:00 EST 2018},
month = {Thu Dec 13 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


The nanoscale circuitry of battery electrodes
journal, December 2017


High-energy electrode investigation for plug-in hybrid electric vehicles
journal, February 2011


Advanced 3D Current Collectors for Lithium-Based Batteries
journal, August 2018


Advanced Lithium Battery Cathodes Using Dispersed Carbon Fibers as the Current Collector
journal, January 2011

  • Martha, Surendra K.; Kiggans, James O.; Nanda, Jagjit
  • Journal of The Electrochemical Society, Vol. 158, Issue 9
  • DOI: 10.1149/1.3611436

Designing Lithium-Sulfur Cells with Practically Necessary Parameters
journal, April 2018


Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode
journal, August 2015


Wicking in a Powder
journal, March 2013

  • Raux, P. S.; Cockenpot, H.; Ramaioli, M.
  • Langmuir, Vol. 29, Issue 11
  • DOI: 10.1021/la400015v

A review of conduction phenomena in Li-ion batteries
journal, December 2010


Free-standing high-voltage LiCoO 2 /multi-wall carbon nanotube paper electrodes with extremely high areal mass loading for lithium ion batteries
journal, January 2015

  • Xie, Ming; Li, Bei; Zhou, Yun
  • Journal of Materials Chemistry A, Vol. 3, Issue 46
  • DOI: 10.1039/C5TA06823A

Thick Electrodes for High Energy Lithium Ion Batteries
journal, January 2015

  • Singh, Madhav; Kaiser, Jörg; Hahn, Horst
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0401507jes

Electroplating lithium transition metal oxides
journal, May 2017


Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities
journal, January 2016

  • Choudhury, Snehashis; Archer, Lynden A.
  • Advanced Electronic Materials, Vol. 2, Issue 2
  • DOI: 10.1002/aelm.201500246

Very Stable Lithium Metal Stripping–Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution
journal, May 2017


The nanoscale circuitry of battery electrodes
journal, December 2017


Works referencing / citing this record:

Free-standing transition metal oxide electrode architectures for electrochemical energy storage
journal, July 2019


Reversible epitaxial electrodeposition of metals in battery anodes
journal, October 2019