DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlling Anisotropic Growth of Colloidal ZnSe Nanostructures

Abstract

Semiconductor nanocrystals serve as outstanding model systems for studying quantum confined size and shape effects. Shape control is an important knob for controlling their properties but so far it has been well developed mainly for heavy-metal containing semiconductor nanocrystals, limiting their further widespread utilization. We report a synthesis of heavy-metal free ZnSe nanocrystals with shape and size control through utilization of well-defined molecular clusters. In this approach, ZnSe nanowires are synthesized and their length and shape control is achieved by introduction of controlled amounts of molecular clusters. As a result of [Zn4(SPh)10](Me4N)2 clusters (Zn4 clusters) addition, short ZnSe nanorods or ZnSe nanodots can be obtained through tuning the ratio of Zn4 clusters to ZnSe. A study using transmission electron microscopy revealed the formation of a hybrid inorganic–organic nanowire, whereby the ligands form a template for self-assembly of ZnSe magic size clusters. The hybrid nanowire template becomes shorter and eventually disappears upon increasing amount of Zn4 clusters in the reaction. The generality of the method is demonstrated by using isostructural [Cu4(SPh)6](Me4N)2 clusters, which presented a new approach to Cu doped ZnSe nanocrystals and provided also a unique opportunity to employ X-ray absorption fine structure spectroscopy for deciphering the changes in themore » local atomic-scale environment of the clusters and explaining their role in the process of the nanorods formation. The introduction of molecular clusters presented here opens a path for growth of colloidal semiconductor nanorods, expanding the palette of materials selection with obvious implications for optoelectronic and biomedical applications.« less

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4]; ORCiD logo [1]
  1. Hebrew Univ. of Jerusalem (Israel). Inst. of Chemistry. The Center for Nanoscience and Nanotechnology
  2. Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering; Manhattan College, Riverdale, NY (United States). Dept. of Physics
  3. Hebrew Univ. of Jerusalem (Israel). The Center for Nanoscience and Nanotechnology. Inst. of Life Sciences
  4. Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering; Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Hebrew Univ. of Jerusalem (Israel)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); United States-Israel Binational Science Foundation (BSF)
OSTI Identifier:
1485251
Report Number(s):
BNL-209665-2018-JAAM
Journal ID: ISSN 0002-7863
Grant/Contract Number:  
SC0012704; AC02-76SF00515; AC02-06CH11357; CHE-1719534; 2013/610
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 44; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Ning, Jiajia, Liu, Jing, Levi-Kalisman, Yael, Frenkel, Anatoly I., and Banin, Uri. Controlling Anisotropic Growth of Colloidal ZnSe Nanostructures. United States: N. p., 2018. Web. doi:10.1021/jacs.8b05941.
Ning, Jiajia, Liu, Jing, Levi-Kalisman, Yael, Frenkel, Anatoly I., & Banin, Uri. Controlling Anisotropic Growth of Colloidal ZnSe Nanostructures. United States. https://doi.org/10.1021/jacs.8b05941
Ning, Jiajia, Liu, Jing, Levi-Kalisman, Yael, Frenkel, Anatoly I., and Banin, Uri. Thu . "Controlling Anisotropic Growth of Colloidal ZnSe Nanostructures". United States. https://doi.org/10.1021/jacs.8b05941. https://www.osti.gov/servlets/purl/1485251.
@article{osti_1485251,
title = {Controlling Anisotropic Growth of Colloidal ZnSe Nanostructures},
author = {Ning, Jiajia and Liu, Jing and Levi-Kalisman, Yael and Frenkel, Anatoly I. and Banin, Uri},
abstractNote = {Semiconductor nanocrystals serve as outstanding model systems for studying quantum confined size and shape effects. Shape control is an important knob for controlling their properties but so far it has been well developed mainly for heavy-metal containing semiconductor nanocrystals, limiting their further widespread utilization. We report a synthesis of heavy-metal free ZnSe nanocrystals with shape and size control through utilization of well-defined molecular clusters. In this approach, ZnSe nanowires are synthesized and their length and shape control is achieved by introduction of controlled amounts of molecular clusters. As a result of [Zn4(SPh)10](Me4N)2 clusters (Zn4 clusters) addition, short ZnSe nanorods or ZnSe nanodots can be obtained through tuning the ratio of Zn4 clusters to ZnSe. A study using transmission electron microscopy revealed the formation of a hybrid inorganic–organic nanowire, whereby the ligands form a template for self-assembly of ZnSe magic size clusters. The hybrid nanowire template becomes shorter and eventually disappears upon increasing amount of Zn4 clusters in the reaction. The generality of the method is demonstrated by using isostructural [Cu4(SPh)6](Me4N)2 clusters, which presented a new approach to Cu doped ZnSe nanocrystals and provided also a unique opportunity to employ X-ray absorption fine structure spectroscopy for deciphering the changes in the local atomic-scale environment of the clusters and explaining their role in the process of the nanorods formation. The introduction of molecular clusters presented here opens a path for growth of colloidal semiconductor nanorods, expanding the palette of materials selection with obvious implications for optoelectronic and biomedical applications.},
doi = {10.1021/jacs.8b05941},
journal = {Journal of the American Chemical Society},
number = 44,
volume = 140,
place = {United States},
year = {Thu Aug 30 00:00:00 EDT 2018},
month = {Thu Aug 30 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Prospects of Nanoscience with Nanocrystals
journal, January 2015

  • Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn506223h

Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking
journal, February 2013

  • Chen, Ou; Zhao, Jing; Chauhan, Vikash P.
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3539

Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods
journal, May 2001


Highly Emissive Nano Rod-in-Rod Heterostructures with Strong Linear Polarization
journal, May 2011

  • Sitt, Amit; Salant, Asaf; Menagen, Gabi
  • Nano Letters, Vol. 11, Issue 5
  • DOI: 10.1021/nl200519b

Colloidal Quantum Nanostructures: Emerging Materials for Display Applications
journal, February 2018

  • Panfil, Yossef E.; Oded, Meirav; Banin, Uri
  • Angewandte Chemie International Edition, Vol. 57, Issue 16
  • DOI: 10.1002/anie.201708510

Semiconductor Nanocrystals as Fluorescent Biological Labels
patent, September 1998


Semiconductor Nanorod–Carbon Nanotube Biomimetic Films for Wire-Free Photostimulation of Blind Retinas
journal, October 2014

  • Bareket, Lilach; Waiskopf, Nir; Rand, David
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl5034304

Synthesis of Colloidal HgTe Quantum Dots for Narrow Mid-IR Emission and Detection
journal, October 2011

  • Keuleyan, Sean; Lhuillier, Emmanuel; Guyot-Sionnest, Philippe
  • Journal of the American Chemical Society, Vol. 133, Issue 41
  • DOI: 10.1021/ja2079509

Mid-IR Colloidal Nanocrystals
journal, March 2013

  • Lhuillier, E.; Keuleyan, S.; Liu, H.
  • Chemistry of Materials, Vol. 25, Issue 8
  • DOI: 10.1021/cm303801s

Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth:  “Focusing” of Size Distributions
journal, June 1998

  • Peng, Xiaogang; Wickham, J.; Alivisatos, A. P.
  • Journal of the American Chemical Society, Vol. 120, Issue 21
  • DOI: 10.1021/ja9805425

Mechanisms of the Shape Evolution of CdSe Nanocrystals
journal, February 2001

  • Peng, Z. Adam; Peng, Xiaogang
  • Journal of the American Chemical Society, Vol. 123, Issue 7
  • DOI: 10.1021/ja0027766

Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level
journal, December 2008

  • Ithurria, Sandrine; Dubertret, Benoit
  • Journal of the American Chemical Society, Vol. 130, Issue 49
  • DOI: 10.1021/ja807724e

Colloidal nanocrystal heterostructures with linear and branched topology
journal, July 2004

  • Milliron, Delia J.; Hughes, Steven M.; Cui, Yi
  • Nature, Vol. 430, Issue 6996, p. 190-195
  • DOI: 10.1038/nature02695

Octapod-Shaped Colloidal Nanocrystals of Cadmium Chalcogenides via “One-Pot” Cation Exchange and Seeded Growth
journal, September 2010

  • Deka, Sasanka; Miszta, Karol; Dorfs, Dirk
  • Nano Letters, Vol. 10, Issue 9
  • DOI: 10.1021/nl102539a

Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals
journal, May 1998

  • Hines, Margaret A.; Guyot-Sionnest, Philippe
  • The Journal of Physical Chemistry B, Vol. 102, Issue 19
  • DOI: 10.1021/jp9810217

Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes
journal, January 2015

  • Wang, Aqiang; Shen, Huaibin; Zang, Shuaipu
  • Nanoscale, Vol. 7, Issue 7
  • DOI: 10.1039/C4NR06593J

Facile Synthesis of Highly Luminescent UV-Blue-Emitting ZnSe/ZnS Core/Shell Nanocrystals in Aqueous Media
journal, July 2009

  • Fang, Zheng; Li, Yan; Zhang, Hua
  • The Journal of Physical Chemistry C, Vol. 113, Issue 32
  • DOI: 10.1021/jp903806b

High-Quality Manganese-Doped ZnSe Nanocrystals
journal, January 2001

  • Norris, D. J.; Yao, Nan; Charnock, F. T.
  • Nano Letters, Vol. 1, Issue 1
  • DOI: 10.1021/nl005503h

Shape control of CdSe nanocrystals
journal, March 2000

  • Peng, Xiaogang; Manna, Liberato; Yang, Weidong
  • Nature, Vol. 404, Issue 6773, p. 59-61
  • DOI: 10.1038/35003535

Ultrathin PbS Sheets by Two-Dimensional Oriented Attachment
journal, July 2010


Ultranarrow ZnSe Nanorods and Nanowires: Structure, Spectroscopy, and One-Dimensional Properties
journal, October 2005


Highly Luminescent Ultranarrow Mn Doped ZnSe Nanowires
journal, January 2009

  • Chin, Patrick T. K.; Stouwdam, Jan W.; Janssen, René A. J.
  • Nano Letters, Vol. 9, Issue 2
  • DOI: 10.1021/nl8033015

Synthesis, Assembly, and Optical Properties of Shape- and Phase-Controlled ZnSe Nanostructures
journal, January 2007

  • Panda, Asit Baran; Acharya, Somobrata; Efrima, Shlomo
  • Langmuir, Vol. 23, Issue 2
  • DOI: 10.1021/la061633f

Zinc Blende 0D Quantum Dots to Wurtzite 1D Quantum Wires: The Oriented Attachment and Phase Change in ZnSe Nanostructures
journal, September 2013

  • Sarkar, Suresh; Acharya, Shinjita; Chakraborty, Arup
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 19
  • DOI: 10.1021/jz401816e

Couples of colloidal semiconductor nanorods formed by self-limited assembly
journal, February 2014

  • Jia, Guohua; Sitt, Amit; Hitin, Gal B.
  • Nature Materials, Vol. 13, Issue 3
  • DOI: 10.1038/nmat3867

A General Strategy for Synthesizing Colloidal Semiconductor Zinc Chalcogenide Quantum Rods
journal, July 2014

  • Jia, Guohua; Banin, Uri
  • Journal of the American Chemical Society, Vol. 136, Issue 31
  • DOI: 10.1021/ja505541q

Material Diffusion and Doping of Mn in Wurtzite ZnSe Nanorods
journal, March 2013

  • Acharya, Shinjita; Sarkar, Suresh; Pradhan, Narayan
  • The Journal of Physical Chemistry C, Vol. 117, Issue 11
  • DOI: 10.1021/jp400456t

Structure and Composition of Cu-Doped CdSe Nanocrystals Using Soft X-ray Absorption Spectroscopy
journal, October 2004

  • Meulenberg, Robert W.; van Buuren, Tony; Hanif, Khalid M.
  • Nano Letters, Vol. 4, Issue 11
  • DOI: 10.1021/nl048738s

Cluster-Seeded Synthesis of Doped CdSe:Cu 4 Quantum Dots
journal, March 2013

  • Jawaid, Ali M.; Chattopadhyay, Soma; Wink, Donald J.
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn305697q

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Multiple Families of Magic-Sized ZnSe Quantum Dots via Noninjection One-Pot and Hot-Injection Synthesis
journal, November 2010

  • Zhang, Lai-Jun; Shen, Xing-Can; Liang, Hong
  • The Journal of Physical Chemistry C, Vol. 114, Issue 50
  • DOI: 10.1021/jp1044282

Synthesis and Characterization of Au 102 ( p -MBA) 44 Nanoparticles
journal, March 2011

  • Levi-Kalisman, Yael; Jadzinsky, Pablo D.; Kalisman, Nir
  • Journal of the American Chemical Society, Vol. 133, Issue 9
  • DOI: 10.1021/ja109131w

Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy
journal, January 2007

  • Cui, Honggang; Hodgdon, Travis K.; Kaler, Eric W.
  • Soft Matter, Vol. 3, Issue 8
  • DOI: 10.1039/b704194b

Advances in cryogenic transmission electron microscopy for the characterization of dynamic self-assembling nanostructures
journal, December 2012

  • Newcomb, Christina J.; Moyer, Tyson J.; Lee, Sungsoo S.
  • Current Opinion in Colloid & Interface Science, Vol. 17, Issue 6
  • DOI: 10.1016/j.cocis.2012.09.004

Two-Dimensional Semiconductor Nanocrystals: Properties, Templated Formation, and Magic-Size Nanocluster Intermediates
journal, December 2014

  • Wang, Fudong; Wang, Yuanyuan; Liu, Yi-Hsin
  • Accounts of Chemical Research, Vol. 48, Issue 1
  • DOI: 10.1021/ar500286j

Tunable Photoluminescent Core/Shell Cu + -Doped ZnSe/ZnS Quantum Dots Codoped with Al 3+ , Ga 3+ , or In 3+
journal, May 2015

  • Cooper, Jason K.; Gul, Sheraz; Lindley, Sarah A.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 18
  • DOI: 10.1021/acsami.5b02860

X-ray absorption edge determination of the oxidation state and coordination number of copper. Application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen
journal, October 1987

  • Kau, Lung Shan; Spira-Solomon, Darlene J.; Penner-Hahn, James E.
  • Journal of the American Chemical Society, Vol. 109, Issue 21
  • DOI: 10.1021/ja00255a032

X-ray absorption spectroscopic studies of the blue copper site: metal and ligand K-edge studies to probe the origin of the EPR hyperfine splitting in plastocyanin
journal, January 1993

  • Shadle, Susan E.; Penner-Hahn, James E.; Schugar, Harvey J.
  • Journal of the American Chemical Society, Vol. 115, Issue 2
  • DOI: 10.1021/ja00055a057

Effect of Al 3+ Co-doping on the Dopant Local Structure, Optical Properties, and Exciton Dynamics in Cu + -Doped ZnSe Nanocrystals
journal, September 2013

  • Gul, Sheraz; Cooper, Jason Kyle; Glans, Per-Anders
  • ACS Nano, Vol. 7, Issue 10
  • DOI: 10.1021/nn402932q

Cation Exchange Reactions in Ionic Nanocrystals
journal, November 2004

  • Son, Dong Hee; Hughes, Steven M.; Yin, Yadong
  • Science, Vol. 306, Issue 5698, p. 1009-1012
  • DOI: 10.1126/science.1103755

Forging Colloidal Nanostructures via Cation Exchange Reactions
journal, February 2016


Works referencing / citing this record:

Heavy‐Metal‐Free Colloidal Semiconductor Nanorods: Recent Advances and Future Perspectives
journal, April 2019


Spontaneous shape and phase control of colloidal ZnSe nanocrystals by tailoring Se precursor reactivity
journal, January 2019

  • Chen, Wei; Karton, Amir; Hussian, Tanveer
  • CrystEngComm, Vol. 21, Issue 18
  • DOI: 10.1039/c9ce00078j

Shell Stabilization of Photocatalytic ZnSe Nanorods
journal, October 2019


Synthesis of InP branched nanostructures by controlling the intermediate nanoclusters
journal, January 2020

  • Kwon, Yongju; Bang, Gyuhyun; Kim, Jeongmin
  • Journal of Materials Chemistry C, Vol. 8, Issue 3
  • DOI: 10.1039/c9tc05845a

Strain-controlled shell morphology on quantum rods
journal, January 2019


Recent Advances in Zinc‐Containing Colloidal Semiconductor Nanocrystals for Optoelectronic and Energy Conversion Applications
journal, July 2019


Chemically reversible isomerization of inorganic clusters
journal, February 2019

  • Williamson, Curtis B.; Nevers, Douglas R.; Nelson, Andrew
  • Science, Vol. 363, Issue 6428
  • DOI: 10.1126/science.aau9464

Multi-Element Topochemical-Molten Salt Synthesis of One-Dimensional Piezoelectric Perovskite
journal, July 2019


Strain-controlled shell morphology on quantum rods
journal, January 2019