DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture

Abstract

Next-generation ‘smart’ nanoparticle systems should be precisely engineered in size, shape and composition to introduce multiple functionalities, unattainable from a single material. Bottom-up chemical methods are prized for the synthesis of crystalline nanoparticles, that is, nanocrystals, with size- and shape-dependent physical properties, but they are less successful in achieving multifunctionality. Top-down lithographic methods can produce multifunctional nanoparticles with precise size and shape control, yet this becomes increasingly difficult at sizes of ~10 nm. In this paper, we report the fabrication of multifunctional, smart nanoparticle systems by combining top-down fabrication and bottom-up self-assembly methods. Particularly, we template nanorods from a mixture of superparamagnetic Zn0.2Fe2.8O4 and plasmonic Au nanocrystals. The superparamagnetism of Zn0.2Fe2.8O4 prevents these nanorods from spontaneous magnetic-dipole-induced aggregation, while their magnetic anisotropy makes them responsive to an external field. Ligand exchange drives Au nanocrystal fusion and forms a porous network, imparting the nanorods with high mechanical strength and polarization-dependent infrared surface plasmon resonances. Finally, the combined superparamagnetic and plasmonic functions enable switching of the infrared transmission of a hybrid nanorod suspension using an external magnetic field.

Authors:
 [1];  [2];  [3];  [2];  [4];  [5];  [4];  [2];  [3];  [6]; ORCiD logo [7];  [8]; ORCiD logo [9];  [10];  [11];  [6]
  1. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Electrical and Systems Engineering. Dept. of Materials Science and Engineering. Dept. of Chemistry; The Nature Conservancy, Arlington, VA (United States)
  2. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science and Engineering
  3. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Electrical and Systems Engineering
  4. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Chemistry
  5. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science and Engineering. Dept. of Chemistry; The Nature Conservancy, Arlington, VA (United States)
  6. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Electrical and Systems Engineering. Dept. of Materials Science and Engineering. Dept. of Chemistry
  7. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials
  8. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Physics and Astronomy
  9. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Electrical and Systems Engineering. Dept. of Materials Science and Engineering. Dept. of Physics and Astronomy. Dept. of Bioengineering
  10. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science and Engineering; Univ. of California, Santa Barbara, CA (United States). Materials Dept.
  11. Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science and Engineering. Dept. of Chemistry
Publication Date:
Research Org.:
Univ. of Pennsylvania, Philadelphia, PA (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Air Force Office of Scientific Research (AFOSR); National Science Foundation (NSF); Nature Conservancy (United States)
Contributing Org.:
The Nature Conservancy, Arlington, VA (United States); Univ. of California, Santa Barbara, CA (United States)
OSTI Identifier:
1368666
Report Number(s):
BNL-113988-2017-JA
Journal ID: ISSN 1748-3387; KC0403020
Grant/Contract Number:  
SC0001004; SC0008135; AC02-98CH10886; FA9550-14-1-0389; NSF-561658; DMR-1120901; DGE-1321851
Resource Type:
Accepted Manuscript
Journal Name:
Nature Nanotechnology
Additional Journal Information:
Journal Volume: 12; Journal Issue: 3; Journal ID: ISSN 1748-3387
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; Magnetic properties and materials; Metamaterials; Nanoparticles; Structural properties

Citation Formats

Zhang, Mingliang, Magagnosc, Daniel J., Liberal, Iñigo, Yu, Yao, Yun, Hongseok, Yang, Haoran, Wu, Yaoting, Guo, Jiacen, Chen, Wenxiang, Shin, Young Jae, Stein, Aaron, Kikkawa, James M., Engheta, Nader, Gianola, Daniel S., Murray, Christopher B., and Kagan, Cherie R. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. United States: N. p., 2016. Web. doi:10.1038/nnano.2016.235.
Zhang, Mingliang, Magagnosc, Daniel J., Liberal, Iñigo, Yu, Yao, Yun, Hongseok, Yang, Haoran, Wu, Yaoting, Guo, Jiacen, Chen, Wenxiang, Shin, Young Jae, Stein, Aaron, Kikkawa, James M., Engheta, Nader, Gianola, Daniel S., Murray, Christopher B., & Kagan, Cherie R. High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. United States. https://doi.org/10.1038/nnano.2016.235
Zhang, Mingliang, Magagnosc, Daniel J., Liberal, Iñigo, Yu, Yao, Yun, Hongseok, Yang, Haoran, Wu, Yaoting, Guo, Jiacen, Chen, Wenxiang, Shin, Young Jae, Stein, Aaron, Kikkawa, James M., Engheta, Nader, Gianola, Daniel S., Murray, Christopher B., and Kagan, Cherie R. Mon . "High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture". United States. https://doi.org/10.1038/nnano.2016.235. https://www.osti.gov/servlets/purl/1368666.
@article{osti_1368666,
title = {High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture},
author = {Zhang, Mingliang and Magagnosc, Daniel J. and Liberal, Iñigo and Yu, Yao and Yun, Hongseok and Yang, Haoran and Wu, Yaoting and Guo, Jiacen and Chen, Wenxiang and Shin, Young Jae and Stein, Aaron and Kikkawa, James M. and Engheta, Nader and Gianola, Daniel S. and Murray, Christopher B. and Kagan, Cherie R.},
abstractNote = {Next-generation ‘smart’ nanoparticle systems should be precisely engineered in size, shape and composition to introduce multiple functionalities, unattainable from a single material. Bottom-up chemical methods are prized for the synthesis of crystalline nanoparticles, that is, nanocrystals, with size- and shape-dependent physical properties, but they are less successful in achieving multifunctionality. Top-down lithographic methods can produce multifunctional nanoparticles with precise size and shape control, yet this becomes increasingly difficult at sizes of ~10 nm. In this paper, we report the fabrication of multifunctional, smart nanoparticle systems by combining top-down fabrication and bottom-up self-assembly methods. Particularly, we template nanorods from a mixture of superparamagnetic Zn0.2Fe2.8O4 and plasmonic Au nanocrystals. The superparamagnetism of Zn0.2Fe2.8O4 prevents these nanorods from spontaneous magnetic-dipole-induced aggregation, while their magnetic anisotropy makes them responsive to an external field. Ligand exchange drives Au nanocrystal fusion and forms a porous network, imparting the nanorods with high mechanical strength and polarization-dependent infrared surface plasmon resonances. Finally, the combined superparamagnetic and plasmonic functions enable switching of the infrared transmission of a hybrid nanorod suspension using an external magnetic field.},
doi = {10.1038/nnano.2016.235},
journal = {Nature Nanotechnology},
number = 3,
volume = 12,
place = {United States},
year = {Mon Nov 07 00:00:00 EST 2016},
month = {Mon Nov 07 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 65 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Magnetically Actuated Liquid Crystals
journal, June 2014

  • Wang, Mingsheng; He, Le; Zorba, Serkan
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501302s

Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension
journal, March 2004

  • Espinosa, H. D.; Prorok, B. C.; Peng, B.
  • Journal of the Mechanics and Physics of Solids, Vol. 52, Issue 3, p. 667-689
  • DOI: 10.1016/j.jmps.2003.07.001

Superparamagnetic Particle Size Limit of Mn-Zn Ferrite Nanoparticles Synthesised Through Aqueous Method
conference, January 2006

  • Joseyphus, R. Justin
  • WATER DYANMICS: 3rd International Workshop on Water Dynamics, AIP Conference Proceedings
  • DOI: 10.1063/1.2207067

Fracture and Failure of Nanoparticle Monolayers and Multilayers
journal, January 2014

  • Wang, Yifan; Kanjanaboos, Pongsakorn; Barry, Edward
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl404185b

Magnetic Modulation of Surface Plasmon Resonance by Tailoring Magnetically Responsive Metallic Block in Multisegment Nanorods
journal, December 2015


A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle
conference, March 2013

  • de la Zerda, Adam; Kircher, Moritz F.; Jokerst, Jesse V.
  • SPIE BiOS, SPIE Proceedings
  • DOI: 10.1117/12.2001719

Magnetic Tuning of Plasmonic Excitation of Gold Nanorods
journal, October 2013

  • Wang, Mingsheng; Gao, Chuanbo; He, Le
  • Journal of the American Chemical Society, Vol. 135, Issue 41
  • DOI: 10.1021/ja408289b

Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies
journal, August 2000


Chemically Tailored Dielectric-to-Metal Transition for the Design of Metamaterials from Nanoimprinted Colloidal Nanocrystals
journal, December 2012

  • Fafarman, Aaron T.; Hong, Sung-Hoon; Caglayan, Humeyra
  • Nano Letters, Vol. 13, Issue 2
  • DOI: 10.1021/nl303161d

Magnetic Assembly and Field-Tuning of Ellipsoidal-Nanoparticle-Based Colloidal Photonic Crystals
journal, April 2015

  • Wang, Mingsheng; He, Le; Xu, Wenjing
  • Angewandte Chemie International Edition, Vol. 54, Issue 24
  • DOI: 10.1002/anie.201501782

Magnetically ultraresponsive nanoscavengers for next-generation water purification systems
journal, May 2013

  • Zhang, Mingliang; Xie, Xing; Tang, Mary
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2892

Recent Progress in Syntheses and Applications of Dumbbell-like Nanoparticles
journal, August 2009


Tuning the Transmittance of Colloidal Solution by Changing the Orientation of Ag Nanoplates in Ferrofluid
journal, August 2012

  • Mao, Yiwu; Liu, Jing; Ge, Jianping
  • Langmuir, Vol. 28, Issue 36
  • DOI: 10.1021/la302353t

Wafer-Scale Synthesis of Monodisperse Synthetic Magnetic Multilayer Nanorods
journal, December 2013

  • Zhang, Mingliang; Bechstein, Daniel J. B.; Wilson, Robert J.
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl404089t

A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation
journal, September 2008


PRINT: A Novel Platform Toward Shape and Size Specific Nanoparticle Theranostics
text, January 2011

  • P., Herlihy, Kevin; E., Napier, Mary; M., Desimone, Joseph
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/csnf-pn32

Monodisperse MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles
journal, January 2004

  • Sun, Shouheng; Zeng, Hao; Robinson, David B.
  • Journal of the American Chemical Society, Vol. 126, Issue 1
  • DOI: 10.1021/ja0380852

A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle
journal, April 2012

  • Kircher, Moritz F.; de la Zerda, Adam; Jokerst, Jesse V.
  • Nature Medicine, Vol. 18, Issue 5
  • DOI: 10.1038/nm.2721

Synthesis of nonstoichiometric zinc ferrite nanoparticles with extraordinary room temperature magnetism and their diverse applications
journal, January 2013

  • Yang, Yang; Liu, Xiaoli; Yang, Yong
  • Journal of Materials Chemistry C, Vol. 1, Issue 16
  • DOI: 10.1039/c3tc00790a

Alternate current magnetic property characterization of nonstoichiometric zinc ferrite nanocrystals for inductor fabrication via a solution based process
journal, March 2016

  • Yun, Hongseok; Kim, Jungkwun; Paik, Taejong
  • Journal of Applied Physics, Vol. 119, Issue 11
  • DOI: 10.1063/1.4942865

Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications
journal, December 2011

  • Ghosh Chaudhuri, Rajib; Paria, Santanu
  • Chemical Reviews, Vol. 112, Issue 4
  • DOI: 10.1021/cr100449n

Catalytic Motors for Transport of Colloidal Cargo
journal, May 2008

  • Sundararajan, Shakuntala; Lammert, Paul E.; Zudans, Andrew W.
  • Nano Letters, Vol. 8, Issue 5
  • DOI: 10.1021/nl072275j

Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces
journal, July 2015


Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers
journal, May 2012


Magnetic Assembly and Field-Tuning of Ellipsoidal-Nanoparticle-Based Colloidal Photonic Crystals
journal, April 2015


Mechanical Properties of Au Supracrystals Tuned by Flexible Ligand Interactions
journal, February 2014

  • Gauvin, Melanie; Wan, YanFen; Arfaoui, Imad
  • The Journal of Physical Chemistry C, Vol. 118, Issue 9
  • DOI: 10.1021/jp411896c

Functionalization of high-moment magnetic nanodisks for cell manipulation and separation
journal, August 2013


Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing
journal, January 2013

  • Rivest, Jessy B.; Jain, Prashant K.
  • Chem. Soc. Rev., Vol. 42, Issue 1
  • DOI: 10.1039/C2CS35241A

Effect of ion irradiation on tensile ductility, strength and fictive temperature in metallic glass nanowires
journal, August 2014


PRINT: A Novel Platform Toward Shape and Size Specific Nanoparticle Theranostics
journal, October 2011

  • Perry, Jillian L.; Herlihy, Kevin P.; Napier, Mary E.
  • Accounts of Chemical Research, Vol. 44, Issue 10
  • DOI: 10.1021/ar2000315

High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps
journal, July 2015


Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications
journal, July 2009

  • Huang, Xiaohua; Neretina, Svetlana; El-Sayed, Mostafa A.
  • Advanced Materials, Vol. 21, Issue 48, p. 4880-4910
  • DOI: 10.1002/adma.200802789

Works referencing / citing this record:

3D Nanofabrication via Chemo-Mechanical Transformation of Nanocrystal/Bulk Heterostructures
journal, April 2018


Smart Materials by Nanoscale Magnetic Assembly
journal, July 2019

  • Li, Zhiwei; Yang, Fan; Yin, Yadong
  • Advanced Functional Materials, Vol. 30, Issue 2
  • DOI: 10.1002/adfm.201903467

Advanced Plasmonic Materials for Dynamic Color Display
journal, November 2017


Dynamic Color‐Switching of Plasmonic Nanoparticle Films
journal, November 2019

  • Liu, Luntao; Aleisa, Rashed; Zhang, Yun
  • Angewandte Chemie International Edition, Vol. 58, Issue 45
  • DOI: 10.1002/anie.201910116

Polymer-guided assembly of inorganic nanoparticles
journal, January 2020

  • Yi, Chenglin; Yang, Yiqun; Liu, Ben
  • Chemical Society Reviews, Vol. 49, Issue 2
  • DOI: 10.1039/c9cs00725c

Stimuli‐Responsive Optical Nanomaterials
journal, February 2019


Active control of plasmonic colors: emerging display technologies
journal, January 2019

  • Xiong, Kunli; Tordera, Daniel; Jonsson, Magnus P.
  • Reports on Progress in Physics, Vol. 82, Issue 2
  • DOI: 10.1088/1361-6633/aaf844

Dynamic Color‐Switching of Plasmonic Nanoparticle Films
journal, September 2019


Bridging functional nanocomposites to robust macroscale devices
journal, June 2019


A General and Robust Strategy for Fabricating Mechanoresponsive Surface Wrinkles with Dynamic Switchable Transmittance
journal, April 2018

  • Jiang, Baolai; Liu, Luntao; Gao, Zongpeng
  • Advanced Optical Materials, Vol. 6, Issue 13
  • DOI: 10.1002/adom.201800195

Multifunctional Nanostructures and Nanopocket Particles Fabricated by Nanoimprint Lithography
journal, December 2019

  • Schrittwieser, Stefan; Haslinger, Michael J.; Mitteramskogler, Tina
  • Nanomaterials, Vol. 9, Issue 12
  • DOI: 10.3390/nano9121790