DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures

Abstract

A thermostat senses the temperature of a physical system and switches heating or cooling devices on or off, regulating the flow of heat to maintain the system’s temperature near a desired set point. Taking advantage of recent advances in radiative heat transfer technologies, here we propose a passive radiative “thermostat” based on phase-change photonic nanostructures for thermal regulation at room temperature. By self-adjusting their visible to mid-IR absorptivity and emissivity responses depending on the ambient temperature, the proposed devices use the sky to passively cool or heat during day-time using the phase-change transition temperature as the set point, while at night-time temperature is maintained at or below ambient. We simulate the performance of a passive nanophotonic thermostat design based on vanadium dioxide thin films, showing daytime passive cooling (heating) with respect to ambient in hot (cold) days, maintaining an equilibrium temperature approximately locked within the phase transition region. Furthermore, passive radiative thermostats can potentially enable novel thermal management technologies, for example, to moderate diurnal temperature in regions with extreme annual thermal swings.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1480047
Report Number(s):
LA-UR-18-25694
Journal ID: ISSN 2330-4022
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
ACS Photonics
Additional Journal Information:
Journal Volume: 5; Journal Issue: 11; Journal ID: ISSN 2330-4022
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; Energy Sciences; Material Science; radiative cooling; selective emission; solar absorber; thermochromic materials

Citation Formats

Kort-Kamp, Wilton J. M., Kramadhati, Shobhita, Azad, Abul Kalam, Reiten, Matthew Thomas, and Dalvit, Diego Alejandro Roberto. Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures. United States: N. p., 2018. Web. doi:10.1021/acsphotonics.8b01026.
Kort-Kamp, Wilton J. M., Kramadhati, Shobhita, Azad, Abul Kalam, Reiten, Matthew Thomas, & Dalvit, Diego Alejandro Roberto. Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures. United States. https://doi.org/10.1021/acsphotonics.8b01026
Kort-Kamp, Wilton J. M., Kramadhati, Shobhita, Azad, Abul Kalam, Reiten, Matthew Thomas, and Dalvit, Diego Alejandro Roberto. Wed . "Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures". United States. https://doi.org/10.1021/acsphotonics.8b01026. https://www.osti.gov/servlets/purl/1480047.
@article{osti_1480047,
title = {Passive Radiative “Thermostat” Enabled by Phase-Change Photonic Nanostructures},
author = {Kort-Kamp, Wilton J. M. and Kramadhati, Shobhita and Azad, Abul Kalam and Reiten, Matthew Thomas and Dalvit, Diego Alejandro Roberto},
abstractNote = {A thermostat senses the temperature of a physical system and switches heating or cooling devices on or off, regulating the flow of heat to maintain the system’s temperature near a desired set point. Taking advantage of recent advances in radiative heat transfer technologies, here we propose a passive radiative “thermostat” based on phase-change photonic nanostructures for thermal regulation at room temperature. By self-adjusting their visible to mid-IR absorptivity and emissivity responses depending on the ambient temperature, the proposed devices use the sky to passively cool or heat during day-time using the phase-change transition temperature as the set point, while at night-time temperature is maintained at or below ambient. We simulate the performance of a passive nanophotonic thermostat design based on vanadium dioxide thin films, showing daytime passive cooling (heating) with respect to ambient in hot (cold) days, maintaining an equilibrium temperature approximately locked within the phase transition region. Furthermore, passive radiative thermostats can potentially enable novel thermal management technologies, for example, to moderate diurnal temperature in regions with extreme annual thermal swings.},
doi = {10.1021/acsphotonics.8b01026},
journal = {ACS Photonics},
number = 11,
volume = 5,
place = {United States},
year = {Wed Oct 17 00:00:00 EDT 2018},
month = {Wed Oct 17 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 59 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Temperature management with passive photonic devices. Schematic representation of a mid-infrared emitter (a) and a solar absorber (b) with idealized selective emissivity (blue) and absorptivity (red), as shown in (c). The orange and green backgrounds correspond to the AM1.5 solar spectrum and the atmospheric transmissivity, respectively. (d, e) Typical equilibrium temperatures of the idealized emitter (blue) and absorber (red) with respect to the ambient temperature (green) during hot and cold days. In both plots the nonzero absorptivity and emissivity were chosen as a = 0.25 and e = 1, and we modeled the time-dependent total solar irradiance using a Gaussian distribution between 6 and 18 h with peak irradiance of 900 W/m2 at noon. The ambient temperature profile ismore » $T$amb(t) = $T$$^{avg}_{amb}$ + $ΔT$amb sin[2$π$(t(h) − 11)/24] with $T$$^{avg}_{amb}$ = 25 °C, $ΔT$amb = 5 °C in (d), and $T$$^{avg}_{amb}$ = 5 °C, $ΔT$amb = 10 °C in (e).« less

Save / Share:

Works referenced in this record:

The radiative cooling of selective surfaces
journal, May 1975


Nocturnal and diurnal performances of selective radiators
journal, October 1977


Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films
journal, June 1981

  • Granqvist, C. G.; Hjortsberg, A.
  • Journal of Applied Physics, Vol. 52, Issue 6, p. 4205-4220
  • DOI: 10.1063/1.329270

Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles
journal, February 2010

  • Gentle, A. R.; Smith, G. B.
  • Nano Letters, Vol. 10, Issue 2, p. 373-379
  • DOI: 10.1021/nl903271d

Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody
journal, September 2015

  • Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 40
  • DOI: 10.1073/pnas.1509453112

Radiative cooling of solar cells
journal, January 2014


Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments
journal, January 2015


Radiative human body cooling by nanoporous polyethylene textile
journal, September 2016


Passive Cooling Systems in Iranian Architecture
journal, February 1978


Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling
journal, March 2013

  • Rephaeli, Eden; Raman, Aaswath; Fan, Shanhui
  • Nano Letters, Vol. 13, Issue 4, p. 1457-1461
  • DOI: 10.1021/nl4004283

A Metamaterial Emitter for Highly Efficient Radiative Cooling
journal, April 2015

  • Hossain, Md Muntasir; Jia, Baohua; Gu, Min
  • Advanced Optical Materials, Vol. 3, Issue 8
  • DOI: 10.1002/adom.201500119

Passive radiative cooling below ambient air temperature under direct sunlight
journal, November 2014

  • Raman, Aaswath P.; Anoma, Marc Abou; Zhu, Linxiao
  • Nature, Vol. 515, Issue 7528, p. 540-544
  • DOI: 10.1038/nature13883

Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle
journal, December 2016

  • Chen, Zhen; Zhu, Linxiao; Raman, Aaswath
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13729

Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling
journal, February 2017


Theoretical limits of thermophotovoltaic solar energy conversion
journal, April 2003


Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit
journal, January 2009

  • Rephaeli, Eden; Fan, Shanhui
  • Optics Express, Vol. 17, Issue 17, p. 15145-15159
  • DOI: 10.1364/OE.17.015145

Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials
journal, October 2011

  • Hedayati, Mehdi Keshavarz; Javaherirahim, Mojtaba; Mozooni, Babak
  • Advanced Materials, Vol. 23, Issue 45
  • DOI: 10.1002/adma.201102646

Metasurface Broadband Solar Absorber
journal, February 2016

  • Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep20347

Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection
journal, March 2007


A nanophotonic solar thermophotovoltaic device
journal, January 2014

  • Lenert, Andrej; Bierman, David M.; Nam, Youngsuk
  • Nature Nanotechnology, Vol. 9, Issue 2, p. 126-130
  • DOI: 10.1038/nnano.2013.286

High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter
journal, January 2015

  • Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo
  • Journal of Photonics for Energy, Vol. 5, Issue 1
  • DOI: 10.1117/1.JPE.5.053099

Broadband perfect absorber based on one ultrathin layer of refractory metal
journal, January 2015

  • Deng, Huixu; Li, Zhigang; Stan, Liliana
  • Optics Letters, Vol. 40, Issue 11
  • DOI: 10.1364/OL.40.002592

Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber
journal, October 2014


Thermochromic VO2 film deposited on Al with tunable thermal emissivity for space applications
journal, December 2011


Vanadium Dioxide as a Natural Disordered Metamaterial: Perfect Thermal Emission and Large Broadband Negative Differential Thermal Emittance
journal, October 2013


Contactless heat flux control with photonic devices
journal, May 2015

  • Ben-Abdallah, Philippe; Biehs, Svend-Age
  • AIP Advances, Vol. 5, Issue 5
  • DOI: 10.1063/1.4915138

Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature
journal, July 1959


Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging
journal, December 2007


Phase-change radiative thermal diode
journal, November 2013

  • Ben-Abdallah, Philippe; Biehs, Svend-Age
  • Applied Physics Letters, Vol. 103, Issue 19
  • DOI: 10.1063/1.4829618

Experimental investigation of radiative thermal rectifier using vanadium dioxide
journal, December 2014

  • Ito, Kota; Nishikawa, Kazutaka; Iizuka, Hideo
  • Applied Physics Letters, Vol. 105, Issue 25
  • DOI: 10.1063/1.4905132

A Thermal Diode Based on Nanoscale Thermal Radiation
journal, May 2018


Near-Field Thermal Transistor
journal, January 2014


Radiative Bistability and Thermal Memory
journal, August 2014


Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide
journal, February 2016

  • Ito, Kota; Nishikawa, Kazutaka; Iizuka, Hideo
  • Applied Physics Letters, Vol. 108, Issue 5
  • DOI: 10.1063/1.4941405

VO2–Sb:SnO2 composite thermochromic smart glass foil
journal, January 2012

  • Gao, Yanfeng; Wang, Shaobo; Kang, Litao
  • Energy & Environmental Science, Vol. 5, Issue 8
  • DOI: 10.1039/c2ee21119j

Intelligent Multifunctional VO 2 /SiO 2 /TiO 2 Coatings for Self-Cleaning, Energy-Saving Window Panels
journal, February 2016


Nanophotonics-enabled smart windows, buildings and wearables
journal, June 2016


Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer
journal, August 2014

  • Wang, Hao; Yang, Yue; Wang, Liping
  • Applied Physics Letters, Vol. 105, Issue 7
  • DOI: 10.1063/1.4893616

Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications
journal, August 2017

  • Taylor, Sydney; Yang, Yue; Wang, Liping
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 197
  • DOI: 10.1016/j.jqsrt.2017.01.014

New aspects of the metal–insulator transition in single-domain vanadium dioxide nanobeams
journal, May 2009


Memory Metamaterials
journal, August 2009


Unraveling Metal-insulator Transition Mechanism of VO2Triggered by Tungsten Doping
journal, June 2012

  • Tan, Xiaogang; Yao, Tao; Long, Ran
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00466

Axially Engineered Metal–Insulator Phase Transition by Graded Doping VO 2 Nanowires
journal, March 2013

  • Lee, Sangwook; Cheng, Chun; Guo, Hua
  • Journal of the American Chemical Society, Vol. 135, Issue 12
  • DOI: 10.1021/ja400658u

Size effects in the structural phase transition of VO 2 nanoparticles
journal, June 2002


Size-Dependent Optical Properties of V O 2 Nanoparticle Arrays
journal, October 2004


Depressed Phase Transition in Solution-Grown VO 2 Nanostructures
journal, July 2009

  • Whittaker, Luisa; Jaye, Cherno; Fu, Zugen
  • Journal of the American Chemical Society, Vol. 131, Issue 25
  • DOI: 10.1021/ja902054w

Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
journal, January 2016

  • Yoon, Joonseok; Kim, Howon; Chen, Xian
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 3
  • DOI: 10.1021/acsami.5b11144

Metal–insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates
journal, January 2002

  • Muraoka, Y.; Hiroi, Z.
  • Applied Physics Letters, Vol. 80, Issue 4
  • DOI: 10.1063/1.1446215

Strain Dynamics of Ultrathin VO 2 Film Grown on TiO 2 (001) and the Associated Phase Transition Modulation
journal, June 2014

  • Fan, L. L.; Chen, S.; Luo, Z. L.
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501480f

Phase transition in bulk single crystals and thin films of V O 2 by nanoscale infrared spectroscopy and imaging
journal, June 2015


Tracking the insulator-to-metal phase transition in VO 2 with few-femtosecond extreme UV transient absorption spectroscopy
journal, August 2017

  • Jager, Marieke F.; Ott, Christian; Kraus, Peter M.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 36
  • DOI: 10.1073/pnas.1707602114

Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature
journal, December 1966


Optical Properties of V O 2 between 0.25 and 5 eV
journal, August 1968


Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide
journal, December 2014


U.S. Climate Reference Network after One Decade of Operations: Status and Assessment
journal, April 2013

  • Diamond, Howard J.; Karl, Thomas R.; Palecki, Michael A.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 4
  • DOI: 10.1175/BAMS-D-12-00170.1

Heating and cooling energy trends and drivers in buildings
journal, January 2015

  • Ürge-Vorsatz, Diana; Cabeza, Luisa F.; Serrano, Susana
  • Renewable and Sustainable Energy Reviews, Vol. 41
  • DOI: 10.1016/j.rser.2014.08.039

Works referencing / citing this record:

Broadband switching of mid-infrared atmospheric windows by VO 2 -based thermal emitter
journal, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.