DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrafast Photodissociation Dynamics of Nitromethane

Abstract

Nitromethane (NM), a high explosive (HE) with low sensitivity, is known to undergo photolysis upon ultraviolet (UV) irradiation. The optical transparency, homogeneity, and extensive study of NM make it an ideal system for studying photodissociation mechanisms in conventional HE materials. The photochemical processes involved in the decomposition of NM could be applied to the future design of controllable photoactive HE materials. In this work, the photodecomposition of NM from the nπ* state excited at 266 nm is being investigated on the femtosecond time scale. UV femtosecond transient absorption (TA) spectroscopy and excited state femtosecond stimulated Raman spectroscopy (FSRS) are combined with nonadiabatic excited state molecular dynamics (NA-ESMD) simulations to provide a unified picture of NM photodecomposition. The FSRS spectrum of the photoproduct exhibits peaks in the NO2 region and slightly shifted C–N vibrational peaks pointing to methyl nitrite formation as the dominant photoproduct. A total photolysis quantum yield of 0.27 and an nπ* state lifetime of ~20 fs were predicted from NA-ESMD simulations. Predicted time scales revealed that NO2 dissociation occurs in 81 ± 4 fs and methyl nitrite formation is much slower having a time scale of 452 ± 9 fs corresponding to the excited state absorption feature withmore » a decay of 480 ± 17 fs observed in the TA spectrum. Lastly, although simulations predict C–N bond cleavage as the primary photochemical process, the relative time scales are consistent with isomerization occurring via NO2 dissociation and subsequent rebinding of the methyl radical and nitrogen dioxide.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1479945
Report Number(s):
LA-UR-15-27850
Journal ID: ISSN 1089-5639
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 120; Journal Issue: 4; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; nitromethane; photochemistry; photodissociation dynamics; quantum yield

Citation Formats

Nelson, Tammie Renee, Bjorgaard, Josiah August, Greenfield, Margo Torello, Bolme, Cindy, Brown, Katie, Mcgrane, Shawn David, Scharff, Robert Jason, and Tretiak, Sergei. Ultrafast Photodissociation Dynamics of Nitromethane. United States: N. p., 2016. Web. doi:10.1021/acs.jpca.5b09776.
Nelson, Tammie Renee, Bjorgaard, Josiah August, Greenfield, Margo Torello, Bolme, Cindy, Brown, Katie, Mcgrane, Shawn David, Scharff, Robert Jason, & Tretiak, Sergei. Ultrafast Photodissociation Dynamics of Nitromethane. United States. https://doi.org/10.1021/acs.jpca.5b09776
Nelson, Tammie Renee, Bjorgaard, Josiah August, Greenfield, Margo Torello, Bolme, Cindy, Brown, Katie, Mcgrane, Shawn David, Scharff, Robert Jason, and Tretiak, Sergei. Wed . "Ultrafast Photodissociation Dynamics of Nitromethane". United States. https://doi.org/10.1021/acs.jpca.5b09776. https://www.osti.gov/servlets/purl/1479945.
@article{osti_1479945,
title = {Ultrafast Photodissociation Dynamics of Nitromethane},
author = {Nelson, Tammie Renee and Bjorgaard, Josiah August and Greenfield, Margo Torello and Bolme, Cindy and Brown, Katie and Mcgrane, Shawn David and Scharff, Robert Jason and Tretiak, Sergei},
abstractNote = {Nitromethane (NM), a high explosive (HE) with low sensitivity, is known to undergo photolysis upon ultraviolet (UV) irradiation. The optical transparency, homogeneity, and extensive study of NM make it an ideal system for studying photodissociation mechanisms in conventional HE materials. The photochemical processes involved in the decomposition of NM could be applied to the future design of controllable photoactive HE materials. In this work, the photodecomposition of NM from the nπ* state excited at 266 nm is being investigated on the femtosecond time scale. UV femtosecond transient absorption (TA) spectroscopy and excited state femtosecond stimulated Raman spectroscopy (FSRS) are combined with nonadiabatic excited state molecular dynamics (NA-ESMD) simulations to provide a unified picture of NM photodecomposition. The FSRS spectrum of the photoproduct exhibits peaks in the NO2 region and slightly shifted C–N vibrational peaks pointing to methyl nitrite formation as the dominant photoproduct. A total photolysis quantum yield of 0.27 and an nπ* state lifetime of ~20 fs were predicted from NA-ESMD simulations. Predicted time scales revealed that NO2 dissociation occurs in 81 ± 4 fs and methyl nitrite formation is much slower having a time scale of 452 ± 9 fs corresponding to the excited state absorption feature with a decay of 480 ± 17 fs observed in the TA spectrum. Lastly, although simulations predict C–N bond cleavage as the primary photochemical process, the relative time scales are consistent with isomerization occurring via NO2 dissociation and subsequent rebinding of the methyl radical and nitrogen dioxide.},
doi = {10.1021/acs.jpca.5b09776},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 4,
volume = 120,
place = {United States},
year = {Wed Jan 06 00:00:00 EST 2016},
month = {Wed Jan 06 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Shock-induced melting of (100)-oriented nitromethane: Energy partitioning and vibrational mode heating
journal, December 2009

  • Dawes, Richard; Siavosh-Haghighi, Ali; Sewell, Thomas D.
  • The Journal of Chemical Physics, Vol. 131, Issue 22
  • DOI: 10.1063/1.3271349

Molecular Dynamics Simulations of Normal Mode Vibrational Energy Transfer in Liquid Nitromethane
journal, January 2004

  • Kabadi, Vinayak N.; Rice, Betsy M.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 4
  • DOI: 10.1021/jp035975v

Density-Dependent Liquid Nitromethane Decomposition: Molecular Dynamics Simulations Based on ReaxFF
journal, September 2011

  • Rom, Naomi; Zybin, Sergey V.; van Duin, Adri C. T.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 36
  • DOI: 10.1021/jp202059v

Reactive Molecular Dynamics Simulation of Solid Nitromethane Impact on (010) Surfaces Induced and Nonimpact Thermal Decomposition
journal, March 2012

  • Guo, Feng; Cheng, Xin-lu; Zhang, Hong
  • The Journal of Physical Chemistry A, Vol. 116, Issue 14
  • DOI: 10.1021/jp211914e

Molecular dynamics simulations of shock waves in oriented nitromethane single crystals
journal, March 2011

  • He, Lan; Sewell, Thomas D.; Thompson, Donald L.
  • The Journal of Chemical Physics, Vol. 134, Issue 12
  • DOI: 10.1063/1.3561397

Emission and Fluorescence Spectroscopy To Examine Shock-Induced Decomposition in Nitromethane
journal, October 1998

  • Gruzdkov, Yuri A.; Gupta, Yogendra M.
  • The Journal of Physical Chemistry A, Vol. 102, Issue 43, p. 8325-8332
  • DOI: 10.1021/jp981588n

Mass Spectroscopic Study of the Chemical Reaction Zone in Detonating Liquid Nitromethane
journal, October 1997

  • Blais, Normand C.; Engelke, Ray; Sheffield, Stephen A.
  • The Journal of Physical Chemistry A, Vol. 101, Issue 44
  • DOI: 10.1021/jp971928p

Effect of Pressure on the Thermolysis of Nitroalkanes in Solution
journal, December 1997

  • Wang, Jiang; Brower, Kay R.; Naud, Darren L.
  • The Journal of Organic Chemistry, Vol. 62, Issue 26
  • DOI: 10.1021/jo9705632

Nitromethane Decomposition under High Static Pressure
journal, July 2010

  • Citroni, Margherita; Bini, Roberto; Pagliai, Marco
  • The Journal of Physical Chemistry B, Vol. 114, Issue 29
  • DOI: 10.1021/jp1035508

Role of electronic excitations in explosive decomposition of solids
journal, April 2001

  • Kuklja, Maija M.; Aduev, B. P.; Aluker, E. D.
  • Journal of Applied Physics, Vol. 89, Issue 7
  • DOI: 10.1063/1.1350631

On the excited electronic state dissociation of nitramine energetic materials and model systems
journal, October 2007

  • Guo, Y. Q.; Greenfield, M.; Bhattacharya, A.
  • The Journal of Chemical Physics, Vol. 127, Issue 15
  • DOI: 10.1063/1.2787587

The thermal decomposition of nitromethane
journal, January 1951

  • Cottrell, T. L.; Graham, T. E.; Reid, T. J.
  • Transactions of the Faraday Society, Vol. 47
  • DOI: 10.1039/tf9514700584

Initiation of petn by high-power laser radiation
journal, July 1985

  • Bykhalo, A. I.; Zhuzhukalo, E. V.; Koval'skii, N. G.
  • Combustion, Explosion, and Shock Waves, Vol. 21, Issue 4
  • DOI: 10.1007/BF01463425

Laser initiation of PETN
journal, July 1996

  • Tarzhanov, V. I.; Zinchenko, A. D.; Sdobnov, V. I.
  • Combustion, Explosion, and Shock Waves, Vol. 32, Issue 4
  • DOI: 10.1007/BF01998499

Photoactive High Explosives: Linear and Nonlinear Photochemistry of Petrin Tetrazine Chloride
journal, May 2015

  • Greenfield, Margo T.; McGrane, Shawn D.; Bolme, Cindy A.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 20
  • DOI: 10.1021/acs.jpca.5b02092

Photolysis of Nitromethane and of Methyl Nitrite in an Argon Matrix; Infrared Detection of Nitroxyl, HNO
journal, October 1958

  • Brown, Harmon W.; Pimentel, George C.
  • The Journal of Chemical Physics, Vol. 29, Issue 4
  • DOI: 10.1063/1.1744605

The photolysis and pyrolysis of nitromethane and methyl nitrite
journal, July 1967

  • Napier, I. M.; Wreyford Norrish, Ronald George
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 299, Issue 1458, p. 317-336
  • DOI: 10.1098/rspa.1967.0139

On the photodissociation of nitromethane at 266 nm
journal, November 1981

  • Kwok, H. S.; He, G. Z.; Sparks, R. K.
  • International Journal of Chemical Kinetics, Vol. 13, Issue 11
  • DOI: 10.1002/kin.550131103

The observation of CH 3 O in the collision free multiphoton dissociation of CH 3 NO 2
journal, January 1986

  • Wodtke, Alec M.; Hintsa, Eric J.; Lee, Yuan T.
  • The Journal of Chemical Physics, Vol. 84, Issue 2
  • DOI: 10.1063/1.450590

Production of the nitromethane aci ion by UV irradiation: its effect on detonation sensitivity
journal, February 1986

  • Engelke, Ray; Earl, William L.; Rohlfing, Celeste McMichael
  • The Journal of Physical Chemistry, Vol. 90, Issue 4
  • DOI: 10.1021/j100276a009

Direct observation of the photodecomposition of liquid nitromethane under UV photolysis by sub-picosecond time-resolved CARS experiments
journal, December 1994

  • Rajchenbach, Corinne; Jonusauskas, Gediminas; Rullière, Claude
  • Chemical Physics Letters, Vol. 231, Issue 4-6
  • DOI: 10.1016/0009-2614(94)01275-X

Multiphoton Ionization and Dissociation of Nitromethane Using Femtosecond Laser Pulses at 375 and 750 nm
journal, January 1997

  • Kilic, H. S.; Ledingham, K. W. D.; Kosmidis, C.
  • The Journal of Physical Chemistry A, Vol. 101, Issue 5
  • DOI: 10.1021/jp962495d

Photodissociation Dynamics of Nitromethane at 226 and 271 nm at Both Nanosecond and Femtosecond Time Scales
journal, January 2009

  • Guo, Y. Q.; Bhattacharya, A.; Bernstein, E. R.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 1
  • DOI: 10.1021/jp806230p

Photodissociation of nitromethane cluster anions
journal, August 2010

  • Goebbert, Daniel J.; Khuseynov, Dmitry; Sanov, Andrei
  • The Journal of Chemical Physics, Vol. 133, Issue 8
  • DOI: 10.1063/1.3479586

The ground and excited state potential energy surfaces of nitromethane related to its dissociation dynamics after excitation at 193 nm
journal, October 2003

  • Arenas, Juan F.; Otero, Juan C.; Peláez, Daniel
  • The Journal of Chemical Physics, Vol. 119, Issue 15
  • DOI: 10.1063/1.1600436

Role of surface crossings in the photochemistry of nitromethane
journal, February 2005

  • Arenas, Juan F.; Otero, Juan C.; Peláez, Daniel
  • The Journal of Chemical Physics, Vol. 122, Issue 8
  • DOI: 10.1063/1.1851977

Nitromethane−Methyl Nitrite Rearrangement:  A Persistent Discrepancy between Theory and Experiment
journal, May 2003

  • Nguyen, Minh Tho; Le, Hung Thanh; Hajgató, Balázs
  • The Journal of Physical Chemistry A, Vol. 107, Issue 21
  • DOI: 10.1021/jp027532h

Picosecond laser-induced fluorescence study of the collisionless photodissociation of nitrocompounds at 266 nm
journal, July 1986


Photofragmentation of nitromethane in a molecular beam at 193 nm
journal, August 1983

  • Blais, Normand C.
  • The Journal of Chemical Physics, Vol. 79, Issue 4
  • DOI: 10.1063/1.446016

Nonadiabatic Excited-State Molecular Dynamics Modeling of Photoinduced Dynamics in Conjugated Molecules
journal, May 2011

  • Nelson, Tammie; Fernandez-Alberti, Sebastian; Chernyak, Vladimir
  • The Journal of Physical Chemistry B, Vol. 115, Issue 18
  • DOI: 10.1021/jp109522g

Nonadiabatic Excited-State Molecular Dynamics: Modeling Photophysics in Organic Conjugated Materials
journal, February 2014

  • Nelson, Tammie; Fernandez-Alberti, Sebastian; Roitberg, Adrian E.
  • Accounts of Chemical Research, Vol. 47, Issue 4
  • DOI: 10.1021/ar400263p

Control of cis- Stilbene Photochemistry Using Shaped Ultraviolet Pulses
journal, March 2009

  • Greenfield, M.; McGrane, S. D.; Moore, D. S.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 11
  • DOI: 10.1021/jp801758v

Nonadiabatic excited-state molecular dynamics: Numerical tests of convergence and parameters
journal, February 2012

  • Nelson, Tammie; Fernandez-Alberti, Sebastian; Chernyak, Vladimir
  • The Journal of Chemical Physics, Vol. 136, Issue 5
  • DOI: 10.1063/1.3680565

Identification of unavoided crossings in nonadiabatic photoexcited dynamics involving multiple electronic states in polyatomic conjugated molecules
journal, July 2012

  • Fernandez-Alberti, Sebastian; Roitberg, Adrian E.; Nelson, Tammie
  • The Journal of Chemical Physics, Vol. 137, Issue 1
  • DOI: 10.1063/1.4732536

Artifacts due to trivial unavoided crossings in the modeling of photoinduced energy transfer dynamics in extended conjugated molecules
journal, December 2013


Nonadiabatic excited-state molecular dynamics: Treatment of electronic decoherence
journal, June 2013

  • Nelson, Tammie; Fernandez-Alberti, Sebastian; Roitberg, Adrian E.
  • The Journal of Chemical Physics, Vol. 138, Issue 22
  • DOI: 10.1063/1.4809568

Molecular dynamics with electronic transitions
journal, July 1990

  • Tully, John C.
  • The Journal of Chemical Physics, Vol. 93, Issue 2
  • DOI: 10.1063/1.459170

Proton transfer in solution: Molecular dynamics with quantum transitions
journal, September 1994

  • Hammes‐Schiffer, Sharon; Tully, John C.
  • The Journal of Chemical Physics, Vol. 101, Issue 6
  • DOI: 10.1063/1.467455

Representation independent algorithms for molecular response calculations in time-dependent self-consistent field theories
journal, February 2009

  • Tretiak, Sergei; Isborn, Christine M.; Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 130, Issue 5
  • DOI: 10.1063/1.3068658

Recursive density‐matrix‐spectral‐moment algorithm for molecular nonlinear polarizabilities
journal, November 1996

  • Tretiak, Sergei; Chernyak, Vladimir; Mukamel, Shaul
  • The Journal of Chemical Physics, Vol. 105, Issue 19
  • DOI: 10.1063/1.472621

Adiabatic time-dependent density functional methods for excited state properties
journal, October 2002

  • Furche, Filipp; Ahlrichs, Reinhart
  • The Journal of Chemical Physics, Vol. 117, Issue 16
  • DOI: 10.1063/1.1508368

Nonadiabatic coupling vectors for excited states within time-dependent density functional theory in the Tamm–Dancoff approximation and beyond
journal, November 2010

  • Tavernelli, Ivano; Curchod, Basile F. E.; Laktionov, Andrey
  • The Journal of Chemical Physics, Vol. 133, Issue 19
  • DOI: 10.1063/1.3503765

Two-Dimensional Real-Space Analysis of Optical Excitations in Acceptor-Substituted Carotenoids
journal, November 1997

  • Tretiak, Sergei; Chernyak, Vladimir; Mukamel, Shaul
  • Journal of the American Chemical Society, Vol. 119, Issue 47
  • DOI: 10.1021/ja9720164

Collective electronic oscillators for nonlinear optical response of conjugated molecules
journal, August 1996


Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model
journal, June 1985

  • Dewar, Michael J. S.; Zoebisch, Eve G.; Healy, Eamonn F.
  • Journal of the American Chemical Society, Vol. 107, Issue 13
  • DOI: 10.1021/ja00299a024

Intersystem Crossings in Model Energetic Materials
journal, November 1999

  • Manaa, M. Riad; Fried, Laurence E.
  • The Journal of Physical Chemistry A, Vol. 103, Issue 46
  • DOI: 10.1021/jp992460o

Density Matrix Analysis and Simulation of Electronic Excitations in Conjugated and Aggregated Molecules
journal, September 2002

  • Tretiak, Sergei; Mukamel, Shaul
  • Chemical Reviews, Vol. 102, Issue 9
  • DOI: 10.1021/cr0101252

Solvent Effects in the Spectra of Acetone, Crotonaldehyde, Nitromethane and Nitrobenzene
journal, November 1954

  • Bayliss, Noel S.; McRae, Eion G.
  • The Journal of Physical Chemistry, Vol. 58, Issue 11
  • DOI: 10.1021/j150521a018

Increased Concentration of the Nitromethyl Aci-Anion in nitromethane-amine mixtures
journal, August 1995

  • Constantinou, Constantinos P.; Pereira, Carl; Chaudhri, M. Munawar
  • Propellants, Explosives, Pyrotechnics, Vol. 20, Issue 4
  • DOI: 10.1002/prep.19950200408

High resolution study of the ν 1 vibration of CH 3 by coherent Raman photofragment spectroscopy
journal, February 1992

  • Triggs, Nancy E.; Zahedi, Mansour; Nibler, Joseph W.
  • The Journal of Chemical Physics, Vol. 96, Issue 3
  • DOI: 10.1063/1.462083

Resonance Raman spectroscopy of the methyl radical
journal, October 1988


Observation of the infrared spectrum of methyl cation CH + 3
journal, October 1985

  • Crofton, Mark W.; Kreiner, Welf A.; Jagod, Mary‐Frances
  • The Journal of Chemical Physics, Vol. 83, Issue 7
  • DOI: 10.1063/1.449125

Infrared matrix isolation spectrum of the methyl radical produced by pyrolysis of methyl iodide and dimethyl mercury
journal, February 1970


Infrared Spectrum of the Methyl Radical in Solid Argon
journal, November 1967

  • Andrews, Lester; Pimentel, George C.
  • The Journal of Chemical Physics, Vol. 47, Issue 9
  • DOI: 10.1063/1.1712434

Infrared spectroscopy of carbo‐ions. III. ν 3 band of methyl cation CH + 3
journal, January 1988

  • Crofton, Mark W.; Jagod, Mary‐Frances; Rehfuss, Brent D.
  • The Journal of Chemical Physics, Vol. 88, Issue 2
  • DOI: 10.1063/1.454194

The vibrational spectra of methyl and methyl-d3 nitrite
journal, May 1982


Rotational Isomerism as a General Property of Alkyl Nitrites
journal, October 1952

  • Tarte, P.
  • The Journal of Chemical Physics, Vol. 20, Issue 10
  • DOI: 10.1063/1.1700218

Preparation, vapor pressure, and infrared spectrum of methyl nitrite
journal, January 1982

  • Rook, Frederick L.
  • Journal of Chemical & Engineering Data, Vol. 27, Issue 1
  • DOI: 10.1021/je00027a022

Photofragmentation of I 2 ⋅Ar n clusters: Observation of metastable isomeric ionic fragments
journal, August 1996

  • Vorsa, Vasil; Campagnola, Paul J.; Nandi, Sreela
  • The Journal of Chemical Physics, Vol. 105, Issue 6
  • DOI: 10.1063/1.472098

The breaking and remaking of a bond: Caging of I 2 in solid Kr
journal, October 1994

  • Zadoyan, R.; Li, Z.; Martens, C. C.
  • The Journal of Chemical Physics, Vol. 101, Issue 8
  • DOI: 10.1063/1.468359

Works referencing / citing this record:

Dissociation dynamics of 3- and 4-nitrotoluene radical cations: Coherently driven C–NO 2 bond homolysis
journal, April 2018

  • Ampadu Boateng, Derrick; Gutsev, Gennady L.; Jena, Puru
  • The Journal of Chemical Physics, Vol. 148, Issue 13
  • DOI: 10.1063/1.5024892