DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stronger-than-Pt hydrogen adsorption in a Au22 nanocluster for the hydrogen evolution reaction

Abstract

Atomically precise metal nanoclusters have recently emerged as a novel class of catalysts for the hydrogen evolution reaction. From first-principles density functional theory, we show in this paper that the eight coordinatively unsaturated (cus) Au atoms in the Au22(L8)6 cluster [L8 = 1,8-bis(diphenylphosphino) octane] can adsorb H stronger than Pt, thereby being a potentially promising catalyst for the hydrogen evolution reaction (HER). We find that up to six H atoms can adsorb onto the Au22(L8)6 cluster and they have close-to-zero Gibbs free adsorption energies (ΔGH). From the HOMO–LUMO gaps, frontier orbitals, and Bader charge analysis, we conclude that H behaves as a hydride or electron-withdrawing ligand in the Au22(L8)6 clusters, in contrast to the metallic H in thiolate-protected Au nanoclusters. Finally, our study demonstrates that ligand-protected Au clusters with cus Au sites will be the most promising candidates for realizing Au–H nanoclusters and can act as excellent electrocatalysts for the HER.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of California, Riverside, CA (United States). Dept. of Chemistry
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division. Center for Nanophase Materials Sciences
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Univ. of California, Riverside, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1468196
Alternate Identifier(s):
OSTI ID: 1434104
Grant/Contract Number:  
AC05-00OR22725; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 6; Journal Issue: 17; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Hu, Guoxiang, Wu, Zili, and Jiang, De-en. Stronger-than-Pt hydrogen adsorption in a Au22 nanocluster for the hydrogen evolution reaction. United States: N. p., 2018. Web. doi:10.1039/C8TA00461G.
Hu, Guoxiang, Wu, Zili, & Jiang, De-en. Stronger-than-Pt hydrogen adsorption in a Au22 nanocluster for the hydrogen evolution reaction. United States. https://doi.org/10.1039/C8TA00461G
Hu, Guoxiang, Wu, Zili, and Jiang, De-en. Mon . "Stronger-than-Pt hydrogen adsorption in a Au22 nanocluster for the hydrogen evolution reaction". United States. https://doi.org/10.1039/C8TA00461G. https://www.osti.gov/servlets/purl/1468196.
@article{osti_1468196,
title = {Stronger-than-Pt hydrogen adsorption in a Au22 nanocluster for the hydrogen evolution reaction},
author = {Hu, Guoxiang and Wu, Zili and Jiang, De-en},
abstractNote = {Atomically precise metal nanoclusters have recently emerged as a novel class of catalysts for the hydrogen evolution reaction. From first-principles density functional theory, we show in this paper that the eight coordinatively unsaturated (cus) Au atoms in the Au22(L8)6 cluster [L8 = 1,8-bis(diphenylphosphino) octane] can adsorb H stronger than Pt, thereby being a potentially promising catalyst for the hydrogen evolution reaction (HER). We find that up to six H atoms can adsorb onto the Au22(L8)6 cluster and they have close-to-zero Gibbs free adsorption energies (ΔGH). From the HOMO–LUMO gaps, frontier orbitals, and Bader charge analysis, we conclude that H behaves as a hydride or electron-withdrawing ligand in the Au22(L8)6 clusters, in contrast to the metallic H in thiolate-protected Au nanoclusters. Finally, our study demonstrates that ligand-protected Au clusters with cus Au sites will be the most promising candidates for realizing Au–H nanoclusters and can act as excellent electrocatalysts for the HER.},
doi = {10.1039/C8TA00461G},
journal = {Journal of Materials Chemistry. A},
number = 17,
volume = 6,
place = {United States},
year = {Mon Mar 19 00:00:00 EDT 2018},
month = {Mon Mar 19 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 55 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Copper polyhydrides
journal, December 1985

  • Lemmen, Timothy H.; Folting, Kirsten; Huffman, John C.
  • Journal of the American Chemical Society, Vol. 107, Issue 25
  • DOI: 10.1021/ja00311a098

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters
journal, September 2016


Projector augmented-wave method
journal, December 1994


The renaissance of hydrides as energy materials
journal, December 2016


A Nanospheric Polyhydrido Copper Cluster of Elongated Triangular Orthobicupola Array: Liberation of H 2 from Solar Energy
journal, March 2013

  • Dhayal, Rajendra S.; Liao, Jian-Hong; Lin, Yan-Ru
  • Journal of the American Chemical Society, Vol. 135, Issue 12
  • DOI: 10.1021/ja401576s

Chinese Puzzle Molecule: A 15 Hydride, 28 Copper Atom Nanoball
journal, May 2014

  • Edwards, Alison J.; Dhayal, Rajendra S.; Liao, Ping-Kuei
  • Angewandte Chemie International Edition, Vol. 53, Issue 28
  • DOI: 10.1002/anie.201403324

A unified view of ligand-protected gold clusters as superatom complexes
journal, July 2008

  • Walter, M.; Akola, J.; Lopez-Acevedo, O.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 27
  • DOI: 10.1073/pnas.0801001105

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Synthesis, Structure and Gas-Phase Reactivity of a Silver Hydride Complex [Ag3{(PPh2)2CH2}33-H)(μ3-Cl)]BF4
journal, June 2013

  • Zavras, Athanasios; Khairallah, George N.; Connell, Timothy U.
  • Angewandte Chemie International Edition, Vol. 52, Issue 32, p. 8391-8394
  • DOI: 10.1002/anie.201302436

Controlling Gold Nanoclusters by Diphospine Ligands
journal, December 2013

  • Chen, Jing; Zhang, Qian-Fan; Bonaccorso, Timary A.
  • Journal of the American Chemical Society, Vol. 136, Issue 1
  • DOI: 10.1021/ja411061e

HYDROGEN IN METALS: Microstructural Aspects
journal, August 2006


Diphosphine-Protected Au 22 Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal
journal, September 2016


Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties
journal, May 2008

  • Zhu, Manzhou; Aikens, Christine M.; Hollander, Frederick J.
  • Journal of the American Chemical Society, Vol. 130, Issue 18, p. 5883-5885
  • DOI: 10.1021/ja801173r

The expanding universe of thiolated gold nanoclusters and beyond
journal, January 2013


Electronic structure calculations on workstation computers: The program system turbomole
journal, October 1989


Photochemistry of Transition Metal Hydrides
journal, June 2016


A Cu 25 Nanocluster with Partial Cu(0) Character
journal, October 2015

  • Nguyen, Thuy-Ai D.; Jones, Zachary R.; Goldsmith, Bryan R.
  • Journal of the American Chemical Society, Vol. 137, Issue 41
  • DOI: 10.1021/jacs.5b07574

Evidence for a surface gold hydride on a nanostructured gold catalyst
journal, January 2016

  • Silverwood, I. P.; Rogers, S. M.; Callear, S. K.
  • Chemical Communications, Vol. 52, Issue 3
  • DOI: 10.1039/C5CC06118K

Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity
journal, June 2016


Energy-adjustedab initio pseudopotentials for the second and third row transition elements
journal, January 1990

  • Andrae, D.; H�u�ermann, U.; Dolg, M.
  • Theoretica Chimica Acta, Vol. 77, Issue 2
  • DOI: 10.1007/BF01114537

Metallic Hydrogen in Atomically Precise Gold Nanoclusters
journal, May 2017


Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 A Resolution
journal, October 2007


Trends in the Exchange Current for Hydrogen Evolution
journal, January 2005

  • Nørskov, J. K.; Bligaard, T.; Logadottir, A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 3
  • DOI: 10.1149/1.1856988

Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles
journal, June 2017


A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Crystal Structure of the Gold Nanoparticle [N(C 8 H 17 ) 4 ][Au 25 (SCH 2 CH 2 Ph) 18 ]
journal, March 2008

  • Heaven, Michael W.; Dass, Amala; White, Peter S.
  • Journal of the American Chemical Society, Vol. 130, Issue 12
  • DOI: 10.1021/ja800561b

Fully optimized contracted Gaussian basis sets for atoms Li to Kr
journal, August 1992

  • Schäfer, Ansgar; Horn, Hans; Ahlrichs, Reinhart
  • The Journal of Chemical Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.463096

Total Structure Determination of Thiolate-Protected Au 38 Nanoparticles
journal, June 2010

  • Qian, Huifeng; Eckenhoff, William T.; Zhu, Yan
  • Journal of the American Chemical Society, Vol. 132, Issue 24
  • DOI: 10.1021/ja103592z

Octanuclear Copper(I) Clusters Inscribed in a Se 12 Icosahedron: Anion-Induced Modulation of the Core Size and Symmetry
journal, August 2009

  • Liu, C. W.; Sarkar, Bijay; Huang, Yao-Jheng
  • Journal of the American Chemical Society, Vol. 131, Issue 31
  • DOI: 10.1021/ja904089t

Preparation and crystallographic characterization of a hexameric triphenylphosphinecopper hydride cluster
journal, April 1971

  • Bezman, Susan A.; Churchill, Melvyn R.; Osborn, John A.
  • Journal of the American Chemical Society, Vol. 93, Issue 8
  • DOI: 10.1021/ja00737a045

Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities
journal, September 2016


A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production
journal, March 2017

  • Kwak, Kyuju; Choi, Woojun; Tang, Qing
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14723

A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines
journal, October 2016

  • Bootharaju, Megalamane S.; Dey, Raju; Gevers, Lieven E.
  • Journal of the American Chemical Society, Vol. 138, Issue 42
  • DOI: 10.1021/jacs.6b05482

Reactivity of Gold Hydrides: O 2 Insertion into the Au–H Bond
journal, November 2014

  • Roşca, Dragoş-Adrian; Fernandez-Cestau, Julio; Hughes, David L.
  • Organometallics, Vol. 34, Issue 11
  • DOI: 10.1021/om501165z

Polyhydrido Copper Clusters: Synthetic Advances, Structural Diversity, and Nanocluster-to-Nanoparticle Conversion
journal, December 2015


Chinese Puzzle Molecule: A 15 Hydride, 28 Copper Atom Nanoball
journal, May 2014

  • Edwards, Alison J.; Dhayal, Rajendra S.; Liao, Ping‐Kuei
  • Angewandte Chemie, Vol. 126, Issue 28
  • DOI: 10.1002/ange.201403324

Electronic structure of AlFeN films exhibiting crystallographic orientation change from c- to a-axis with Fe concentrations and annealing effect
journal, February 2020


Trends in the Exchange Current for Hydrogen Evolution.
journal, June 2005


Works referencing / citing this record:

A hydrophobic semiconducting metal–organic framework assembled from silver chalcogenide wires
journal, January 2020

  • Wang, Jia-Yin; Li, Wen-Hua; Wei, Zhong
  • Chemical Communications, Vol. 56, Issue 14
  • DOI: 10.1039/c9cc08402a

An Au 22 (L 8 ) 6 nanocluster with in situ uncoordinated Au as a highly active catalyst for O 2 activation and CO oxidation
journal, January 2019

  • Li, Fuhua; Tang, Qing
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 36
  • DOI: 10.1039/c9cp03469b

Triple 1D1D superatomic bonding. Au 22 (dppo) 6 as a Π 4 - and Δ 2 -triply bonded cluster based on Au 11 assembled units
journal, January 2020

  • Muñoz-Castro, Alvaro
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 3
  • DOI: 10.1039/c9cp05790k

Reaction mechanisms at the homogeneous–heterogeneous frontier: insights from first-principles studies on ligand-decorated metal nanoparticles
journal, January 2019

  • Ortuño, Manuel A.; López, Núria
  • Catalysis Science & Technology, Vol. 9, Issue 19
  • DOI: 10.1039/c9cy01351b

Engineering ultrasmall metal nanoclusters for photocatalytic and electrocatalytic applications
journal, January 2019

  • Chai, Osburg Jin Huang; Liu, Zhihe; Chen, Tiankai
  • Nanoscale, Vol. 11, Issue 43
  • DOI: 10.1039/c9nr07272a

Non-Monotonic Trends of Hydrogen Adsorption on Single Atom Doped g-C3N4
journal, January 2019