DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries

Abstract

Here, the notorious lithium (Li) dendrites and the low Coulombic efficiency (CE) of Li anode are two major obstacles to the practical utilization of Li metal batteries (LMBs). Introducing a dendrite-suppressing additive into nonaqueous electrolytes is one of the facile and effective solutions to promote the commercialization of LMBs. Herein, Li difluorophosphate (LiPO2F2, LiDFP) is used as an electrolyte additive to inhibit Li dendrite growth by forming a vigorous and stable solid electrolyte interphase film on metallic Li anode. Moreover, the Li CE can be largely improved from 84.6% of the conventional LiPF6-based electrolyte to 95.2% by the addition of an optimal concentration of LiDFP at 0.15 M. The optimal LiDFP-containing electrolyte can allow the Li||Li symmetric cells to cycle stably for more than 500 and 200 h at 0.5 and 1.0 mA cm–2, respectively, much longer than the control electrolyte without LiDFP additive. Meanwhile, this LiDFP-containing electrolyte also plays an important role in enhancing the cycling stability of the Li||LiNi1/3Co1/3Mn1/3O2 cells with a moderately high mass loading of 9.7 mg cm–2. These results demonstrate that LiDFP has extensive application prospects as a dendrite-suppressing additive in advanced LMBs.

Authors:
 [1];  [2]; ORCiD logo [1];  [1];  [1]; ORCiD logo [3]
  1. Hefei Univ. of Technology, Anhui (China)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chinese Academy of Sciences, Anhui (China)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); National Natural Science Foundation of China (NSFC)
Contributing Org.:
Hefei University of Technology, Pacific Northwest National Laboratory
OSTI Identifier:
1457041
Grant/Contract Number:  
AC02-05CH11231; 21676067; 51372060; 21606065; 51502300; 1708085QE98; 1608085QE88
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 10; Journal Issue: 26; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; electrolyte additive; lithium dendrite suppression; lithium difluorophosphate; lithium metal battery; solid electrolyte interphase

Citation Formats

Shi, Pengcheng, Zhang, Linchao, Xiang, Hongfa, Liang, Xin, Sun, Yi, and Xu, Wu. Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries. United States: N. p., 2018. Web. doi:10.1021/acsami.8b05185.
Shi, Pengcheng, Zhang, Linchao, Xiang, Hongfa, Liang, Xin, Sun, Yi, & Xu, Wu. Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries. United States. https://doi.org/10.1021/acsami.8b05185
Shi, Pengcheng, Zhang, Linchao, Xiang, Hongfa, Liang, Xin, Sun, Yi, and Xu, Wu. Wed . "Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries". United States. https://doi.org/10.1021/acsami.8b05185. https://www.osti.gov/servlets/purl/1457041.
@article{osti_1457041,
title = {Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries},
author = {Shi, Pengcheng and Zhang, Linchao and Xiang, Hongfa and Liang, Xin and Sun, Yi and Xu, Wu},
abstractNote = {Here, the notorious lithium (Li) dendrites and the low Coulombic efficiency (CE) of Li anode are two major obstacles to the practical utilization of Li metal batteries (LMBs). Introducing a dendrite-suppressing additive into nonaqueous electrolytes is one of the facile and effective solutions to promote the commercialization of LMBs. Herein, Li difluorophosphate (LiPO2F2, LiDFP) is used as an electrolyte additive to inhibit Li dendrite growth by forming a vigorous and stable solid electrolyte interphase film on metallic Li anode. Moreover, the Li CE can be largely improved from 84.6% of the conventional LiPF6-based electrolyte to 95.2% by the addition of an optimal concentration of LiDFP at 0.15 M. The optimal LiDFP-containing electrolyte can allow the Li||Li symmetric cells to cycle stably for more than 500 and 200 h at 0.5 and 1.0 mA cm–2, respectively, much longer than the control electrolyte without LiDFP additive. Meanwhile, this LiDFP-containing electrolyte also plays an important role in enhancing the cycling stability of the Li||LiNi1/3Co1/3Mn1/3O2 cells with a moderately high mass loading of 9.7 mg cm–2. These results demonstrate that LiDFP has extensive application prospects as a dendrite-suppressing additive in advanced LMBs.},
doi = {10.1021/acsami.8b05185},
journal = {ACS Applied Materials and Interfaces},
number = 26,
volume = 10,
place = {United States},
year = {Wed Jun 13 00:00:00 EDT 2018},
month = {Wed Jun 13 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 119 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Average CE values of Li metal in electrolytes with LiDFP additive from 0 to 0.15 M.

Save / Share:

Works referenced in this record:

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries
journal, June 2017


Structure-Property Relationships of Organic Electrolytes and Their Effects on Li/S Battery Performance
journal, June 2017

  • Kaiser, Mohammad Rejaul; Chou, Shulei; Liu, Hua-Kun
  • Advanced Materials, Vol. 29, Issue 48
  • DOI: 10.1002/adma.201700449

Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy
journal, July 2016


Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Dendrite short-circuit and fuse effect on Li/polymer/Li cells
journal, July 2006


Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014

  • Lu, Dongping; Shao, Yuyan; Lozano, Terence
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400993

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures
journal, April 2015


Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer
journal, April 2017


Advanced Micro/Nanostructures for Lithium Metal Anodes
journal, February 2017


Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator
journal, October 2017

  • Lee, Hongkyung; Ren, Xiaodi; Niu, Chaojiang
  • Advanced Functional Materials, Vol. 27, Issue 45
  • DOI: 10.1002/adfm.201704391

All-Integrated Bifunctional Separator for Li Dendrite Detection via Novel Solution Synthesis of a Thermostable Polyimide Separator
journal, August 2016

  • Lin, Dingchang; Zhuo, Denys; Liu, Yayuan
  • Journal of the American Chemical Society, Vol. 138, Issue 34
  • DOI: 10.1021/jacs.6b06324

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Dendrite-Free Lithium Deposition with Self-Aligned Columnar Structure in a Carbonate–Ether Mixed Electrolyte
journal, May 2017


Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase
journal, December 2017

  • Wan, Guojia; Guo, Feihu; Li, Hui
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 1
  • DOI: 10.1021/acsami.7b14662

Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold
journal, September 2016

  • Xie, Keyu; Wei, Wenfei; Yuan, Kai
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 39
  • DOI: 10.1021/acsami.6b09031

Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive
journal, July 2015


Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy
journal, December 2000

  • Cohen, Yaron S.; Cohen, Yair; Aurbach, Doron
  • The Journal of Physical Chemistry B, Vol. 104, Issue 51
  • DOI: 10.1021/jp002526b

Electrochemical Deposition of Very Smooth Lithium Using Nonaqueous Electrolytes Containing HF
journal, January 1996

  • Kanamura, Kiyoshi
  • Journal of The Electrochemical Society, Vol. 143, Issue 7
  • DOI: 10.1149/1.1836979

Effect of vinylene carbonate as additive to electrolyte for lithium metal anode
journal, February 2004


Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
journal, February 2017


The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF 6 and Cyclic Carbonate Additives
journal, November 2017


In Situ Plating of Porous Mg Network Layer to Reinforce Anode Dendrite Suppression in Li-Metal Batteries
journal, December 2017

  • Chu, Fulu; Hu, Jiulin; Tian, Jing
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 15
  • DOI: 10.1021/acsami.8b00989

Nanostructured Carbon Nitride Polymer-Reinforced Electrolyte To Enable Dendrite-Suppressed Lithium Metal Batteries
journal, March 2017

  • Hu, Jiulin; Tian, Jing; Li, Chilin
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 13
  • DOI: 10.1021/acsami.7b00478

Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions
journal, February 2012


Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2O
journal, January 2005


Effects of the LiPO2F2 additive on unwanted lithium plating in lithium-ion cells
journal, February 2018


Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries
journal, October 2017

  • Adams, Brian D.; Zheng, Jianming; Ren, Xiaodi
  • Advanced Energy Materials, Vol. 8, Issue 7
  • DOI: 10.1002/aenm.201702097

Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications
journal, March 2017

  • Zheng, Jianming; Lochala, Joshua A.; Kwok, Alexander
  • Advanced Science, Vol. 4, Issue 8
  • DOI: 10.1002/advs.201700032

Kinetics of Lithium Ion Transfer at the Interface between Graphite and Liquid Electrolytes: Effects of Solvent and Surface Film
journal, November 2009

  • Yamada, Yuki; Iriyama, Yasutoshi; Abe, Takeshi
  • Langmuir, Vol. 25, Issue 21
  • DOI: 10.1021/la901829v

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Works referencing / citing this record:

A Guide to Full Coin Cell Making for Academic Researchers
journal, January 2019

  • Murray, Vivian; Hall, David S.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.1171902jes

Additive‐Assisted Novel Dual‐Salt Electrolyte Addresses Wide Temperature Operation of Lithium–Metal Batteries
journal, March 2019


Solid Electrolyte Interphase Film on Lithium Metal Anode in Mixed-Salt System
journal, January 2019

  • Eijima, Sho; Sonoki, Hidetoshi; Matsumoto, Mitsuhiro
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0611903jes

A self-healing interface on lithium metal with lithium difluoro (bisoxalato) phosphate for enhanced lithium electrochemistry
journal, January 2019

  • Zhuang, Jingchun; Wang, Xianshu; Xu, Mengqing
  • Journal of Materials Chemistry A, Vol. 7, Issue 45
  • DOI: 10.1039/c9ta09539j

Trace ethanol as an efficient electrolyte additive to reduce the activation voltage of the Li 2 S cathode in lithium-ion–sulfur batteries
journal, January 2019

  • Liang, Xin; Yun, Jufeng; Xu, Kun
  • Chemical Communications, Vol. 55, Issue 68
  • DOI: 10.1039/c9cc04877d

A Multifunctional Thiophene-Based Electrolyte Additive for Lithium Metal Batteries Using High-Voltage LiCoO 2 Cathode
journal, January 2019

  • Zheng, Yi; Fang, Wei; Zheng, Hao
  • Journal of The Electrochemical Society, Vol. 166, Issue 14
  • DOI: 10.1149/2.0291914jes

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.