DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Revealing Charge Transport Mechanisms in Li 2 S 2 for Li–Sulfur Batteries

Abstract

Besides lithium sulfide (Li2S), lithium persulfide (Li2S2) is another solid discharge product in lithium-sulfur (Li-S) batteries. Revealing the charge transport mechanism in the discharge products is important for developing an effective strategy to improve the performance of Li-S batteries. Li2S2 cannot transport free electrons due to its wide bandgap between the valence band maximum (VBM) and conduction band minimum (VBM). However, electron polarons (p-) and hole polarons (p+) can appear in solid Li2S2 due to the unique molecular orbital structure of the S22- anion. The thermodynamic and kinetic properties of native defects are investigated. It is found that negatively charged Li vacancies (VLi-) and p+ are the main native defects with a low formation energy of 0.77 eV. The predominant charge carrier is p+ because p+ has a high mobility. Thus, the electronic conductivity related to p+ diffusion is dependent on temperature, and high temperatures are preferred to increase the conductivity.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Texas A & M Univ., College Station, TX (United States). Dept. of Mechanical Engineering and Dept. of Chemical Engineering
Publication Date:
Research Org.:
Texas A & M Univ., College Station, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1430632
Grant/Contract Number:  
EE0006832
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Volume: 8; Journal Issue: 7; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE

Citation Formats

Liu, Zhixiao, Balbuena, Perla B., and Mukherjee, Partha P. Revealing Charge Transport Mechanisms in Li 2 S 2 for Li–Sulfur Batteries. United States: N. p., 2017. Web. doi:10.1021/acs.jpclett.6b03063.
Liu, Zhixiao, Balbuena, Perla B., & Mukherjee, Partha P. Revealing Charge Transport Mechanisms in Li 2 S 2 for Li–Sulfur Batteries. United States. https://doi.org/10.1021/acs.jpclett.6b03063
Liu, Zhixiao, Balbuena, Perla B., and Mukherjee, Partha P. Mon . "Revealing Charge Transport Mechanisms in Li 2 S 2 for Li–Sulfur Batteries". United States. https://doi.org/10.1021/acs.jpclett.6b03063. https://www.osti.gov/servlets/purl/1430632.
@article{osti_1430632,
title = {Revealing Charge Transport Mechanisms in Li 2 S 2 for Li–Sulfur Batteries},
author = {Liu, Zhixiao and Balbuena, Perla B. and Mukherjee, Partha P.},
abstractNote = {Besides lithium sulfide (Li2S), lithium persulfide (Li2S2) is another solid discharge product in lithium-sulfur (Li-S) batteries. Revealing the charge transport mechanism in the discharge products is important for developing an effective strategy to improve the performance of Li-S batteries. Li2S2 cannot transport free electrons due to its wide bandgap between the valence band maximum (VBM) and conduction band minimum (VBM). However, electron polarons (p-) and hole polarons (p+) can appear in solid Li2S2 due to the unique molecular orbital structure of the S22- anion. The thermodynamic and kinetic properties of native defects are investigated. It is found that negatively charged Li vacancies (VLi-) and p+ are the main native defects with a low formation energy of 0.77 eV. The predominant charge carrier is p+ because p+ has a high mobility. Thus, the electronic conductivity related to p+ diffusion is dependent on temperature, and high temperatures are preferred to increase the conductivity.},
doi = {10.1021/acs.jpclett.6b03063},
journal = {Journal of Physical Chemistry Letters},
number = 7,
volume = 8,
place = {United States},
year = {Mon Mar 06 00:00:00 EST 2017},
month = {Mon Mar 06 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 52 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Review on Li-S Batteries as a High Efficiency Rechargeable Lithium Battery
journal, January 2013

  • Barghamadi, Marzieh; Kapoor, Ajay; Wen, Cuie
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.096308jes

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Progress in Mechanistic Understanding and Characterization Techniques of Li-S Batteries
journal, May 2015


Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification
journal, April 2012

  • Barchasz, Céline; Molton, Florian; Duboc, Carole
  • Analytical Chemistry, Vol. 84, Issue 9
  • DOI: 10.1021/ac2032244

The Lithium/Sulfur Rechargeable Cell
journal, January 2002

  • Shim, Joongpyo; Striebel, Kathryn A.; Cairns, Elton J.
  • Journal of The Electrochemical Society, Vol. 149, Issue 10
  • DOI: 10.1149/1.1503076

Polysulfide Shuttle Study in the Li/S Battery System
journal, January 2004

  • Mikhaylik, Yuriy V.; Akridge, James R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 11, p. A1969-A1976
  • DOI: 10.1149/1.1806394

Rational design of sulphur host materials for Li–S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss
journal, January 2015

  • Hart, Connor J.; Cuisinier, Marine; Liang, Xiao
  • Chemical Communications, Vol. 51, Issue 12
  • DOI: 10.1039/C4CC08980D

Designing high-energy lithium–sulfur batteries
journal, January 2016

  • Seh, Zhi Wei; Sun, Yongming; Zhang, Qianfan
  • Chemical Society Reviews, Vol. 45, Issue 20
  • DOI: 10.1039/C5CS00410A

Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium–Sulfur Batteries
journal, May 2015


Long-Chain Polysulfide Retention at the Cathode of Li–S Batteries
journal, February 2016

  • Kamphaus, Ethan P.; Balbuena, Perla B.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 8
  • DOI: 10.1021/acs.jpcc.5b12538

Evaluating silicene as a potential cathode host to immobilize polysulfides in lithium–sulfur batteries
journal, May 2016

  • Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
  • Journal of Coordination Chemistry, Vol. 69, Issue 11-13
  • DOI: 10.1080/00958972.2016.1184265

Mechanism and Kinetics of Li 2 S Precipitation in Lithium-Sulfur Batteries
journal, August 2015

  • Fan, Frank Y.; Carter, W. Craig; Chiang, Yet-Ming
  • Advanced Materials, Vol. 27, Issue 35
  • DOI: 10.1002/adma.201501559

How Dopants Can Enhance Charge Transport in Li 2 O 2
journal, January 2015

  • Radin, Maxwell D.; Monroe, Charles W.; Siegel, Donald J.
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm503874c

Improving Li 2 O 2 conductivity via polaron preemption: An ab initio study of Si doping
journal, August 2013

  • Timoshevskii, Vladimir; Feng, Zimin; Bevan, Kirk H.
  • Applied Physics Letters, Vol. 103, Issue 7
  • DOI: 10.1063/1.4818268

Improved Energy Capacity of Aprotic Li–O 2 Batteries by Forming Cl-Incorporated Li 2 O 2 as the Discharge Product
journal, June 2016

  • Matsuda, Shoichi; Kubo, Yoshimi; Uosaki, Kohei
  • The Journal of Physical Chemistry C, Vol. 120, Issue 25
  • DOI: 10.1021/acs.jpcc.6b03083

First-principles Study on the Charge Transport Mechanism of Lithium Sulfide (Li 2 S) in Lithium-Sulfur Batteries
journal, March 2016

  • Kim, B. S. Do-Hoon; Lee, M. S. Byungju; Park, Kyu-Young
  • Chemistry - An Asian Journal, Vol. 11, Issue 8
  • DOI: 10.1002/asia.201600007

The Li-S (lithium-sulfur) system
journal, February 1995


First-Principles Study of Redox End Members in Lithium–Sulfur Batteries
journal, February 2015

  • Park, Haesun; Koh, Hyun Seung; Siegel, Donald J.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 9
  • DOI: 10.1021/jp513023v

Insight into the role of Li 2 S 2 in Li–S batteries: a first-principles study
journal, January 2015

  • Yang, Guochun; Shi, Shaoqing; Yang, Jinghai
  • Journal of Materials Chemistry A, Vol. 3, Issue 16
  • DOI: 10.1039/C5TA00499C

Transient existence of crystalline lithium disulfide Li2S2 in a lithium-sulfur battery
journal, September 2016


High-Capacity Micrometer-Sized Li2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries
journal, September 2012

  • Yang, Yuan; Zheng, Guangyuan; Misra, Sumohan
  • Journal of the American Chemical Society, Vol. 134, Issue 37, p. 15387-15394
  • DOI: 10.1021/ja3052206

α-Fe 2 O 3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention
journal, January 2014

  • Xu, Simeng; Hessel, Colin M.; Ren, Hao
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE43319F

Multishelled TiO 2 Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries
journal, October 2014

  • Ren, Hao; Yu, Ranbo; Wang, Jiangyan
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl503378a

Poromechanical effect in the lithium–sulfur battery cathode
journal, December 2016


Intrinsic Conductivity in Sodium–Air Battery Discharge Phases: Sodium Superoxide vs Sodium Peroxide
journal, May 2015


Charge transport in lithium peroxide: relevance for rechargeable metal–air batteries
journal, January 2013

  • Radin, Maxwell D.; Siegel, Donald J.
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee41632a

Unveiling the charge migration mechanism in Na 2 O 2 : implications for sodium–air batteries
journal, January 2015

  • Araujo, Rafael B.; Chakraborty, Sudip; Ahuja, Rajeev
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 12
  • DOI: 10.1039/C4CP05042H

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

First-principles study of electronic structure and ground-state properties of alkali-metal sulfides – Li2S, Na2S, K2S and Rb2S
journal, April 2007

  • Eithiraj, R. D.; Jaiganesh, G.; Kalpana, G.
  • physica status solidi (b), Vol. 244, Issue 4
  • DOI: 10.1002/pssb.200642506

Influence of the exchange screening parameter on the performance of screened hybrid functionals
journal, December 2006

  • Krukau, Aliaksandr V.; Vydrov, Oleg A.; Izmaylov, Artur F.
  • The Journal of Chemical Physics, Vol. 125, Issue 22
  • DOI: 10.1063/1.2404663

Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery
journal, February 2010

  • Hummelshøj, J. S.; Blomqvist, J.; Datta, S.
  • The Journal of Chemical Physics, Vol. 132, Issue 7
  • DOI: 10.1063/1.3298994

First-principles study of transition metal doped Li2S as cathode materials in lithium batteries
journal, November 2012

  • Luo, Gaixia; Zhao, Jijun; Wang, Baolin
  • Journal of Renewable and Sustainable Energy, Vol. 4, Issue 6
  • DOI: 10.1063/1.4768814

Implications of the formation of small polarons in Li 2 O 2 for Li-air batteries
journal, January 2012


Low hole polaron migration barrier in lithium peroxide
journal, February 2012


A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

A fast and robust algorithm for Bader decomposition of charge density
journal, June 2006


Tunneling and Polaron Charge Transport through Li 2 O 2 in Li–O 2 Batteries
journal, September 2013

  • Luntz, A. C.; Viswanathan, V.; Voss, J.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 20
  • DOI: 10.1021/jz401926f

Electrical conductivity in Li 2 O 2 and its role in determining capacity limitations in non-aqueous Li-O 2 batteries
journal, December 2011

  • Viswanathan, V.; Thygesen, K. S.; Hummelshøj, J. S.
  • The Journal of Chemical Physics, Vol. 135, Issue 21
  • DOI: 10.1063/1.3663385

Lithium and oxygen vacancies and their role in Li 2 O 2 charge transport in Li–O 2 batteries
journal, January 2014

  • Varley, J. B.; Viswanathan, V.; Nørskov, J. K.
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE42446D

Low Temperature Performance of Li/S Batteries
journal, January 2003

  • Mikhaylik, Yuriy V.; Akridge, James R.
  • Journal of The Electrochemical Society, Vol. 150, Issue 3
  • DOI: 10.1149/1.1545452

Nanoscale Stabilization of Sodium Oxides: Implications for Na–O 2 Batteries
journal, January 2014

  • Kang, ShinYoung; Mo, Yifei; Ong, Shyue Ping
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl404557w

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


The density functional formalism, its applications and prospects
journal, July 1989


Unified Approach for Molecular Dynamics and Density-Functional Theory
journal, November 1985


Works referencing / citing this record:

Mesoscale Physicochemical Interactions in Lithium–Sulfur Batteries: Progress and Perspective
journal, October 2017

  • Liu, Zhixiao; Mistry, Aashutosh; Mukherjee, Partha P.
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 15, Issue 1
  • DOI: 10.1115/1.4037785

Current-density dependence of Li 2 S/Li 2 S 2 growth in lithium–sulfur batteries
journal, January 2019

  • Kong, Long; Chen, Jin-Xiu; Peng, Hong-Jie
  • Energy & Environmental Science, Vol. 12, Issue 10
  • DOI: 10.1039/c9ee01257e

Sigma-Holes in Battery Materials Using Iso-Electrostatic Potential Surfaces
journal, January 2018

  • Roman-Vicharra, Cristhian; Franco-Gallo, Franz; Alaminsky, Ryan
  • Crystals, Vol. 8, Issue 1
  • DOI: 10.3390/cryst8010033

Recent advances in separators to mitigate technical challenges associated with re-chargeable lithium sulfur batteries
journal, January 2019

  • Rana, Masud; Li, Ming; Huang, Xia
  • Journal of Materials Chemistry A, Vol. 7, Issue 12
  • DOI: 10.1039/c8ta12066h

Rate Constants of Electrochemical Reactions in a Lithium-Sulfur Cell Determined by Operando X-ray Absorption Spectroscopy
journal, January 2018

  • Wang, Dunyang Rita; Shah, Deep B.; Maslyn, Jacqueline A.
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.0981814jes

Revealing reaction mechanisms of nanoconfined Li 2 S: implications for lithium–sulfur batteries
journal, January 2018

  • Liu, Zhixiao; Deng, Huiqiu; Hu, Wangyu
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 17
  • DOI: 10.1039/c8cp01462k

Tailored Reaction Route by Micropore Confinement for Li-S Batteries Operating under Lean Electrolyte Conditions
journal, May 2018

  • Wang, Hui; Adams, Brian D.; Pan, Huilin
  • Advanced Energy Materials, Vol. 8, Issue 21
  • DOI: 10.1002/aenm.201800590

A Li 2 S-Based Sacrificial Layer for Stable Operation of Lithium-Sulfur Batteries
journal, October 2018